Image matching using local symmetry features

D. C. Hauagge, Noah Snavely
{"title":"Image matching using local symmetry features","authors":"D. C. Hauagge, Noah Snavely","doi":"10.1109/CVPR.2012.6247677","DOIUrl":null,"url":null,"abstract":"We present a new technique for extracting local features from images of architectural scenes, based on detecting and representing local symmetries. These new features are motivated by the fact that local symmetries, at different scales, are a fundamental characteristic of many urban images, and are potentially more invariant to large appearance changes than lower-level features such as SIFT. Hence, we apply these features to the problem of matching challenging pairs of photos of urban scenes. Our features are based on simple measures of local bilateral and rotational symmetries computed using local image operations. These measures are used both for feature detection and for computing descriptors. We demonstrate our method on a challenging new dataset containing image pairs exhibiting a range of dramatic variations in lighting, age, and rendering style, and show that our features can improve matching performance for this difficult task.","PeriodicalId":177454,"journal":{"name":"2012 IEEE Conference on Computer Vision and Pattern Recognition","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"164","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2012.6247677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 164

Abstract

We present a new technique for extracting local features from images of architectural scenes, based on detecting and representing local symmetries. These new features are motivated by the fact that local symmetries, at different scales, are a fundamental characteristic of many urban images, and are potentially more invariant to large appearance changes than lower-level features such as SIFT. Hence, we apply these features to the problem of matching challenging pairs of photos of urban scenes. Our features are based on simple measures of local bilateral and rotational symmetries computed using local image operations. These measures are used both for feature detection and for computing descriptors. We demonstrate our method on a challenging new dataset containing image pairs exhibiting a range of dramatic variations in lighting, age, and rendering style, and show that our features can improve matching performance for this difficult task.
利用局部对称特征进行图像匹配
提出了一种基于局部对称性检测和表示的建筑场景图像局部特征提取方法。这些新特征源于这样一个事实,即不同尺度下的局部对称性是许多城市图像的基本特征,并且与SIFT等低层次特征相比,它们对大的外观变化可能更加不变性。因此,我们将这些特征应用于具有挑战性的城市场景照片配对问题。我们的特征是基于使用局部图像操作计算的局部双边和旋转对称性的简单度量。这些度量既用于特征检测,也用于计算描述符。我们在一个具有挑战性的新数据集上展示了我们的方法,该数据集包含了在光照、年龄和渲染风格方面表现出一系列戏剧性变化的图像对,并表明我们的特征可以提高这项困难任务的匹配性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信