A uniform cube-free morphism is k-power-free for all integers k ≥ 4

Francis Wlazinski
{"title":"A uniform cube-free morphism is k-power-free for all integers k ≥ 4","authors":"Francis Wlazinski","doi":"10.1051/ita/2017015","DOIUrl":null,"url":null,"abstract":"In the study of k -power-free morphisms, the case of 3-free-morphisms, i.e. , cube-free morphisms, often differs from other k -power-free morphisms. Indeed, cube-freeness is less restrictive than square-freeness. And a cube provides less equations to solve than any integer k ≥ 4. Anyway, the fact that the image of a word by a morphism contains a cube implies relations that, under some assumptions, allow us to establish our main result: a cube-free uniform morphism is a k -power-free morphism for all integers k ≥ 4.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2017015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the study of k -power-free morphisms, the case of 3-free-morphisms, i.e. , cube-free morphisms, often differs from other k -power-free morphisms. Indeed, cube-freeness is less restrictive than square-freeness. And a cube provides less equations to solve than any integer k ≥ 4. Anyway, the fact that the image of a word by a morphism contains a cube implies relations that, under some assumptions, allow us to establish our main result: a cube-free uniform morphism is a k -power-free morphism for all integers k ≥ 4.
对于所有k≥4的整数,一致无立方态射是无k幂的
在无k幂态射的研究中,3-自由态射,即无立方态射的情况往往不同于其他无k幂态射。的确,立方体自由比平方自由的限制更少。立方体提供的方程比k≥4的任何整数都要少。无论如何,一个词的态射象包含一个立方体的事实暗示了一些关系,在某些假设下,允许我们建立我们的主要结果:对于所有整数k≥4,一个无立方体一致态射是一个无k幂态射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信