Behavioral sequence prediction for evolving data stream

Sheikh M. Qumruzzaman, L. Khan, B. Thuraisingham
{"title":"Behavioral sequence prediction for evolving data stream","authors":"Sheikh M. Qumruzzaman, L. Khan, B. Thuraisingham","doi":"10.1109/IRI.2013.6642509","DOIUrl":null,"url":null,"abstract":"Behavioral pattern prediction has many applications, ranging from consumer buying behavior analysis, web surfing prediction to network attack prediction. The traditional behavioral prediction technique works mainly on a fixed dataset. But recent advances in digital technology generates a huge amount of data which contributes to data stream. Data evolves over time due to the concept drift. Stream-based classification also needs to evolve over time. Our goal is not to predict a single action/behavior, but a sequence of actions that can occur later depending on the previous actions. We call this problem “Behavioral Pattern Extrapolation”. In our research, we exploited a stream mining based technique along with Markovian model, where we used an incremental and ensemble based technique for predicting a set of future actions. We have experimented using a number of benchmark datasets and shown the effectiveness of our approach.","PeriodicalId":418492,"journal":{"name":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2013.6642509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Behavioral pattern prediction has many applications, ranging from consumer buying behavior analysis, web surfing prediction to network attack prediction. The traditional behavioral prediction technique works mainly on a fixed dataset. But recent advances in digital technology generates a huge amount of data which contributes to data stream. Data evolves over time due to the concept drift. Stream-based classification also needs to evolve over time. Our goal is not to predict a single action/behavior, but a sequence of actions that can occur later depending on the previous actions. We call this problem “Behavioral Pattern Extrapolation”. In our research, we exploited a stream mining based technique along with Markovian model, where we used an incremental and ensemble based technique for predicting a set of future actions. We have experimented using a number of benchmark datasets and shown the effectiveness of our approach.
演化数据流的行为序列预测
行为模式预测有很多应用,从消费者购买行为分析、网页浏览预测到网络攻击预测。传统的行为预测技术主要在固定的数据集上工作。但最近数字技术的进步产生了大量的数据,这有助于数据流。由于概念漂移,数据会随着时间的推移而演变。基于流的分类也需要随着时间的推移而发展。我们的目标不是预测单个动作/行为,而是根据之前的动作预测随后可能发生的一系列动作。我们称这个问题为“行为模式外推”。在我们的研究中,我们利用了基于流挖掘的技术以及马尔可夫模型,其中我们使用了基于增量和集成的技术来预测一组未来的动作。我们已经使用许多基准数据集进行了实验,并证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信