Implementation of Genetic Algorithm (GA) for Hyperparameter Optimization in a Termite Detection System

M. A. Nanda, K. Seminar, M. Solahudin, A. Maddu, D. Nandika
{"title":"Implementation of Genetic Algorithm (GA) for Hyperparameter Optimization in a Termite Detection System","authors":"M. A. Nanda, K. Seminar, M. Solahudin, A. Maddu, D. Nandika","doi":"10.1145/3282286.3282289","DOIUrl":null,"url":null,"abstract":"In the development of a termite detection system, four hyperparameters including cost (C), gamma (γ), coefficient (r) and degree (d), must be conscientiously predetermined in establishing an efficient support vector machine (SVM) model. Therefore, the objective of this study is to develop a robust classification model generated by a genetic-based SVM (GA-SVM) that can automatically determine the optimal parameters of SVM with the highest predictive accuracy and generalization ability. Based on acoustic signals, the energy and entropy are derived as a feature input to the SVM classifier to detect termites. From these experimental results, it can be seen that the GA-SVM can more significantly improve the performance of our proposed system compared to previous research based on the grid-search method. Based on the numerical analysis, our proposed system achieves the excellent accuracy of 0.9264.","PeriodicalId":324982,"journal":{"name":"Proceedings of the 2nd International Conference on Graphics and Signal Processing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Graphics and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3282286.3282289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In the development of a termite detection system, four hyperparameters including cost (C), gamma (γ), coefficient (r) and degree (d), must be conscientiously predetermined in establishing an efficient support vector machine (SVM) model. Therefore, the objective of this study is to develop a robust classification model generated by a genetic-based SVM (GA-SVM) that can automatically determine the optimal parameters of SVM with the highest predictive accuracy and generalization ability. Based on acoustic signals, the energy and entropy are derived as a feature input to the SVM classifier to detect termites. From these experimental results, it can be seen that the GA-SVM can more significantly improve the performance of our proposed system compared to previous research based on the grid-search method. Based on the numerical analysis, our proposed system achieves the excellent accuracy of 0.9264.
白蚁检测系统超参数优化遗传算法的实现
在白蚁检测系统的开发过程中,为了建立高效的支持向量机(SVM)模型,必须认真确定成本(C)、伽马(γ)、系数(r)和度(d)四个超参数。因此,本研究的目标是开发一种由基于遗传的支持向量机(GA-SVM)生成的鲁棒分类模型,该模型能够以最高的预测精度和泛化能力自动确定支持向量机的最优参数。基于声信号,导出能量和熵作为特征输入到支持向量机分类器中进行白蚁检测。从这些实验结果可以看出,与之前基于网格搜索方法的研究相比,GA-SVM可以更显著地提高我们所提出系统的性能。通过数值分析,该系统达到了0.9264的优良精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信