Bounding the Escape Time of a Linear Dynamical System over a Compact Semialgebraic Set

Julian D'Costa, Engel Lefaucheux, E. Neumann, J. Ouaknine, J. Worrell
{"title":"Bounding the Escape Time of a Linear Dynamical System over a Compact Semialgebraic Set","authors":"Julian D'Costa, Engel Lefaucheux, E. Neumann, J. Ouaknine, J. Worrell","doi":"10.48550/arXiv.2207.01550","DOIUrl":null,"url":null,"abstract":"We study the Escape Problem for discrete-time linear dynamical systems over compact semialgebraic sets. We establish a uniform upper bound on the number of iterations it takes for every orbit of a rational matrix to escape a compact semialgebraic set defined over rational data. Our bound is doubly exponential in the ambient dimension, singly exponential in the degrees of the polynomials used to define the semialgebraic set, and singly exponential in the bitsize of the coefficients of these polynomials and the bitsize of the matrix entries. We show that our bound is tight by providing a matching lower bound.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"6 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.01550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the Escape Problem for discrete-time linear dynamical systems over compact semialgebraic sets. We establish a uniform upper bound on the number of iterations it takes for every orbit of a rational matrix to escape a compact semialgebraic set defined over rational data. Our bound is doubly exponential in the ambient dimension, singly exponential in the degrees of the polynomials used to define the semialgebraic set, and singly exponential in the bitsize of the coefficients of these polynomials and the bitsize of the matrix entries. We show that our bound is tight by providing a matching lower bound.
紧半代数集上线性动力系统逃逸时间的定界
研究紧半代数集上离散线性动力系统的逃逸问题。我们建立了在有理数数据上定义的紧半代数集上,一个有理数矩阵的每个轨道的迭代次数的一致上界。我们的边界在环境维度上是双指数的,在用于定义半代数集的多项式的度上是单指数的,在这些多项式的系数的位大小和矩阵项的位大小上是单指数的。我们通过提供一个匹配的下界来证明我们的界是紧的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信