{"title":"Automatic detection of nocuous coordination ambiguities in natural language requirements","authors":"Hui Yang, A. Willis, A. Roeck, B. Nuseibeh","doi":"10.1145/1858996.1859007","DOIUrl":null,"url":null,"abstract":"Natural language is prevalent in requirements documents. However, ambiguity is an intrinsic phenomenon of natural language, and is therefore present in all such documents. Ambiguity occurs when a sentence can be interpreted differently by different readers. In this paper, we describe an automated approach for characterizing and detecting so-called nocuous ambiguities, which carry a high risk of misunderstanding among different readers. Given a natural language requirements document, sentences that contain specific types of ambiguity are first extracted automatically from the text. A machine learning algorithm is then used to determine whether an ambiguous sentence is nocuous or innocuous, based on a set of heuristics that draw on human judgments, which we collected as training data. We implemented a prototype tool for Nocuous Ambiguity Identification (NAI), in order to illustrate and evaluate our approach. The tool focuses on coordination ambiguity. We report on the results of a set of experiments to assess the performance and usefulness of the approach.","PeriodicalId":341489,"journal":{"name":"Proceedings of the 25th IEEE/ACM International Conference on Automated Software Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1858996.1859007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51
Abstract
Natural language is prevalent in requirements documents. However, ambiguity is an intrinsic phenomenon of natural language, and is therefore present in all such documents. Ambiguity occurs when a sentence can be interpreted differently by different readers. In this paper, we describe an automated approach for characterizing and detecting so-called nocuous ambiguities, which carry a high risk of misunderstanding among different readers. Given a natural language requirements document, sentences that contain specific types of ambiguity are first extracted automatically from the text. A machine learning algorithm is then used to determine whether an ambiguous sentence is nocuous or innocuous, based on a set of heuristics that draw on human judgments, which we collected as training data. We implemented a prototype tool for Nocuous Ambiguity Identification (NAI), in order to illustrate and evaluate our approach. The tool focuses on coordination ambiguity. We report on the results of a set of experiments to assess the performance and usefulness of the approach.