Developing Probabilistic Models for Identifying Semantic Patterns in Texts

Minhua Huang, R. Haralick
{"title":"Developing Probabilistic Models for Identifying Semantic Patterns in Texts","authors":"Minhua Huang, R. Haralick","doi":"10.1109/ICSC.2011.35","DOIUrl":null,"url":null,"abstract":"We present a probabilistic graphical model that finds a sequence of optimal categories for a sequence of input symbols. Based on this mode, three algorithms are developed for identifying semantic patterns in texts. They are the algorithm for extracting semantic arguments of a verb, the algorithm for classifying the sense of an ambiguous word, and the algorithm for identifying noun phrases from a sentence. Experiments conducted on standard data sets show good results. For example, our method achieves an average precision of 92:96% and an average recall of 94:94% for extracting semantic argument boundaries of verbs on WSJ data from Penn Tree bank and Prop Bank, an average accuracy of 81:12% for recognizing the six sense word 0line0, and an average precision of 97:7% and an average recall of 98:8% for recognizing noun phrases on WSJ data from Penn Tree bank.","PeriodicalId":408382,"journal":{"name":"2011 IEEE Fifth International Conference on Semantic Computing","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Fifth International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2011.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a probabilistic graphical model that finds a sequence of optimal categories for a sequence of input symbols. Based on this mode, three algorithms are developed for identifying semantic patterns in texts. They are the algorithm for extracting semantic arguments of a verb, the algorithm for classifying the sense of an ambiguous word, and the algorithm for identifying noun phrases from a sentence. Experiments conducted on standard data sets show good results. For example, our method achieves an average precision of 92:96% and an average recall of 94:94% for extracting semantic argument boundaries of verbs on WSJ data from Penn Tree bank and Prop Bank, an average accuracy of 81:12% for recognizing the six sense word 0line0, and an average precision of 97:7% and an average recall of 98:8% for recognizing noun phrases on WSJ data from Penn Tree bank.
发展文本语义模式识别的概率模型
我们提出了一个概率图模型,该模型为输入符号序列找到一个最优类别序列。在此基础上,提出了三种文本语义模式识别算法。它们是提取动词语义参数的算法,对歧义词的意义进行分类的算法,以及从句子中识别名词短语的算法。在标准数据集上进行了实验,取得了良好的效果。例如,我们的方法在Penn Tree bank和Prop bank的WSJ数据上提取动词语义参数边界的平均准确率为92:96%,平均召回率为94:94%;识别6个义词0line0的平均准确率为81:12%;识别Penn Tree bank的WSJ数据上的名词短语的平均准确率为97:7%,平均召回率为98:8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信