Research of electrical impedance tomography based on the Modified Particle Swarm Optimization

Hui Zhang, Haibin Wang, Yongjun Zhou, Xiaodi Zhang
{"title":"Research of electrical impedance tomography based on the Modified Particle Swarm Optimization","authors":"Hui Zhang, Haibin Wang, Yongjun Zhou, Xiaodi Zhang","doi":"10.1109/ICNC.2012.6234558","DOIUrl":null,"url":null,"abstract":"The particle swarm optimization (PSO) is a robust stochastic evolutionary computation algorithm based on the movement and intelligence of bird swarm, it can overcome the drawbacks of the Newton-like iteration algorithm in EIT. This paper presents the Modified Particle Swarm Optimization(M-PSO) algorithm to reconstruction the conductivity distribution in EIT imaging, where the circle-domain solved is discretized into irregular polygons by the Finite Element Method (FEM), trigonometric current pattern and the M-PSO are adopted to reconstruct the conductivity distribution where has one or two targets in the circle-domain. The numerical simulation result shows that the methods given in this paper can reflect accurately the conductivity distribution and locates the targets.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The particle swarm optimization (PSO) is a robust stochastic evolutionary computation algorithm based on the movement and intelligence of bird swarm, it can overcome the drawbacks of the Newton-like iteration algorithm in EIT. This paper presents the Modified Particle Swarm Optimization(M-PSO) algorithm to reconstruction the conductivity distribution in EIT imaging, where the circle-domain solved is discretized into irregular polygons by the Finite Element Method (FEM), trigonometric current pattern and the M-PSO are adopted to reconstruct the conductivity distribution where has one or two targets in the circle-domain. The numerical simulation result shows that the methods given in this paper can reflect accurately the conductivity distribution and locates the targets.
基于改进粒子群优化的电阻抗层析成像研究
粒子群优化算法(PSO)是一种基于鸟群运动和智能的鲁棒随机进化计算算法,它克服了类牛顿迭代算法在EIT中的不足。本文提出了一种改进粒子群优化算法(M-PSO)来重建EIT成像中的电导率分布,该算法通过有限元法将解出的圆域离散成不规则多边形,采用三角电流模式和M-PSO来重建圆域中有一个或两个目标的电导率分布。数值模拟结果表明,本文所提出的方法能够准确反映目标的电导率分布并对目标进行定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信