Real-world credit scoring: a comparative study of statistical and artificial intelligent methods

Zhou Ying, Tabassum Habib, Guotai Chi, M. S. Uddin
{"title":"Real-world credit scoring: a comparative study of statistical and artificial intelligent methods","authors":"Zhou Ying, Tabassum Habib, Guotai Chi, M. S. Uddin","doi":"10.1504/IJKEDM.2019.10018093","DOIUrl":null,"url":null,"abstract":"Credit scoring is an integral and crucial part of any lending process that any little development in it can reduce huge potential losses of financial organisations. The assessment of model performance varies because of different performance measures under a variety of circumstances on different nature of datasets. Therefore, this study employed six well-known classification approaches on six real-world credit datasets for comprehensive assessment by combining ten representative performance criterions. The experimental outcomes, statistical significance test and the estimated cost of prediction error confirm the marginal superiority of logistic regression (LR) and TreeNet over CART and MARS, being more robust compared to other two approaches LASSO and RF.","PeriodicalId":386151,"journal":{"name":"Int. J. Knowl. Eng. Data Min.","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Eng. Data Min.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKEDM.2019.10018093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Credit scoring is an integral and crucial part of any lending process that any little development in it can reduce huge potential losses of financial organisations. The assessment of model performance varies because of different performance measures under a variety of circumstances on different nature of datasets. Therefore, this study employed six well-known classification approaches on six real-world credit datasets for comprehensive assessment by combining ten representative performance criterions. The experimental outcomes, statistical significance test and the estimated cost of prediction error confirm the marginal superiority of logistic regression (LR) and TreeNet over CART and MARS, being more robust compared to other two approaches LASSO and RF.
真实世界信用评分:统计方法与人工智能方法的比较研究
信用评分是任何贷款过程中不可或缺的关键部分,它的任何微小发展都可以减少金融机构的巨大潜在损失。由于在不同性质的数据集的各种情况下,不同的性能度量,对模型性能的评估也会有所不同。因此,本研究采用6种知名的分类方法,结合10个具有代表性的绩效标准,对6个真实世界的信用数据集进行综合评价。实验结果、统计显著性检验和估计的预测误差成本证实了logistic回归(LR)和TreeNet相对于CART和MARS的边际优势,比其他两种方法LASSO和RF更具稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信