Fast detection of vascular plaque in optical coherence tomography images using a reduced feature set

A. Prakash, Mariano Ocana Macias, M. Hewko, M. Sowa, S. Sherif
{"title":"Fast detection of vascular plaque in optical coherence tomography images using a reduced feature set","authors":"A. Prakash, Mariano Ocana Macias, M. Hewko, M. Sowa, S. Sherif","doi":"10.1117/12.2283017","DOIUrl":null,"url":null,"abstract":"Optical coherence tomography (OCT) images are capable of detecting vascular plaque by using the full set of 26 Haralick textural features and a standard K-means clustering algorithm. However, the use of the full set of 26 textural features is computationally expensive and may not be feasible for real time implementation. In this work, we identified a reduced set of 3 textural feature which characterizes vascular plaque and used a generalized Fuzzy C-means clustering algorithm. Our work involves three steps: 1) the reduction of a full set 26 textural feature to a reduced set of 3 textural features by using genetic algorithm (GA) optimization method 2) the implementation of an unsupervised generalized clustering algorithm (Fuzzy C-means) on the reduced feature space, and 3) the validation of our results using histology and actual photographic images of vascular plaque. Our results show an excellent match with histology and actual photographic images of vascular tissue. Therefore, our results could provide an efficient pre-clinical tool for the detection of vascular plaque in real time OCT imaging.","PeriodicalId":184459,"journal":{"name":"Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2283017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Optical coherence tomography (OCT) images are capable of detecting vascular plaque by using the full set of 26 Haralick textural features and a standard K-means clustering algorithm. However, the use of the full set of 26 textural features is computationally expensive and may not be feasible for real time implementation. In this work, we identified a reduced set of 3 textural feature which characterizes vascular plaque and used a generalized Fuzzy C-means clustering algorithm. Our work involves three steps: 1) the reduction of a full set 26 textural feature to a reduced set of 3 textural features by using genetic algorithm (GA) optimization method 2) the implementation of an unsupervised generalized clustering algorithm (Fuzzy C-means) on the reduced feature space, and 3) the validation of our results using histology and actual photographic images of vascular plaque. Our results show an excellent match with histology and actual photographic images of vascular tissue. Therefore, our results could provide an efficient pre-clinical tool for the detection of vascular plaque in real time OCT imaging.
利用简化特征集快速检测光学相干断层扫描图像中的血管斑块
光学相干断层扫描(OCT)图像能够通过使用全套26个哈拉里克纹理特征和标准k均值聚类算法来检测血管斑块。然而,使用完整的26个纹理特征集在计算上是昂贵的,并且可能不适合实时实现。在这项工作中,我们确定了一组简化的3个纹理特征来表征血管斑块,并使用了广义模糊c均值聚类算法。我们的工作包括三个步骤:1)使用遗传算法(GA)优化方法将完整的26个纹理特征约简为3个纹理特征的约简集;2)在约简特征空间上实现无监督广义聚类算法(Fuzzy C-means); 3)使用血管斑块的组织学和实际摄影图像验证我们的结果。我们的研究结果与维管组织的组织学和实际摄影图像非常吻合。因此,我们的研究结果可以为实时OCT成像中血管斑块的检测提供一种有效的临床前工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信