Antonios Makris, D. Michail, Iraklis Varlamis, Chronis Dimitropoulos, K. Tserpes, G. Tsatsaronis, J. Haupt, M. Sawyer
{"title":"Parallelization of Large-Scale Drug-Protein Binding Experiments","authors":"Antonios Makris, D. Michail, Iraklis Varlamis, Chronis Dimitropoulos, K. Tserpes, G. Tsatsaronis, J. Haupt, M. Sawyer","doi":"10.1109/HPCS.2017.39","DOIUrl":null,"url":null,"abstract":"Drug polypharmacology or “drug promiscuity” refers to the ability of a drug to bind multiple proteins. Such studies have huge impact to the pharmaceutical industry, but in the same time require large investments on wet-lab experiments. The respective in-silico experiments have a significantly smaller cost and minimize the expenses for the subsequent lab experiments. However, the process of finding similar protein targets for an existing drug, passes through protein structural similarity and is a highly demanding in computational resources task. In this work, we propose several algorithms that port the protein similarity task to a parallel high-performance computing environment. The differences in size and complexity of the examined protein structures raise several issues in a naive parallelization process that significantly affect the overall time and required memory. We describe several optimizations for better memory and CPU balancing which achieve faster execution times. Experimental results, on a high-performance computing environment with 512 cores and 2048GB of memory, demonstrate the effectiveness of our approach which scales well to large amounts of protein pairs.","PeriodicalId":115758,"journal":{"name":"2017 International Conference on High Performance Computing & Simulation (HPCS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS.2017.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Drug polypharmacology or “drug promiscuity” refers to the ability of a drug to bind multiple proteins. Such studies have huge impact to the pharmaceutical industry, but in the same time require large investments on wet-lab experiments. The respective in-silico experiments have a significantly smaller cost and minimize the expenses for the subsequent lab experiments. However, the process of finding similar protein targets for an existing drug, passes through protein structural similarity and is a highly demanding in computational resources task. In this work, we propose several algorithms that port the protein similarity task to a parallel high-performance computing environment. The differences in size and complexity of the examined protein structures raise several issues in a naive parallelization process that significantly affect the overall time and required memory. We describe several optimizations for better memory and CPU balancing which achieve faster execution times. Experimental results, on a high-performance computing environment with 512 cores and 2048GB of memory, demonstrate the effectiveness of our approach which scales well to large amounts of protein pairs.