Segmentation of Sentinel-1 SAR Images Over the Ocean, Preliminary Methods and Assessments

A. Colin, C. Peureux, R. Husson, N. Longépé, Régis Rauzy, Ronan Fablet, P. Tandeo, Samir Saoudi, A. Mouche, G. Dibarboure
{"title":"Segmentation of Sentinel-1 SAR Images Over the Ocean, Preliminary Methods and Assessments","authors":"A. Colin, C. Peureux, R. Husson, N. Longépé, Régis Rauzy, Ronan Fablet, P. Tandeo, Samir Saoudi, A. Mouche, G. Dibarboure","doi":"10.1109/IGARSS47720.2021.9553429","DOIUrl":null,"url":null,"abstract":"Segmentations of ocean SAR images (Sentinel-1 A and B) into 10 classes of metoceanic phenomena are for the first time presented, with a 400 m resolution. Ocean SAR images segmentation differs from classic deep learning problems with a high variety of shapes and a particular importance of high-frequency patterns. To this end, an assessment of deep learning frameworks is performed, with a focus on the comparison between weakly supervised and supervised methods. Metrics based on the Wassertein distance indicate best performances by the supervised segmentation (U-Net) given operational constraints, thus highlighting the significance of properly annotated data sets. While available training data sets are made of small $20 \\times 20 \\text{km}$ imagettes, the extension of the inference from imagettes to wide swath images, with a wider variety of incidence angles, presents promising results and opens the way to more extensive oceanographic applications in SAR imagery.","PeriodicalId":315312,"journal":{"name":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS47720.2021.9553429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Segmentations of ocean SAR images (Sentinel-1 A and B) into 10 classes of metoceanic phenomena are for the first time presented, with a 400 m resolution. Ocean SAR images segmentation differs from classic deep learning problems with a high variety of shapes and a particular importance of high-frequency patterns. To this end, an assessment of deep learning frameworks is performed, with a focus on the comparison between weakly supervised and supervised methods. Metrics based on the Wassertein distance indicate best performances by the supervised segmentation (U-Net) given operational constraints, thus highlighting the significance of properly annotated data sets. While available training data sets are made of small $20 \times 20 \text{km}$ imagettes, the extension of the inference from imagettes to wide swath images, with a wider variety of incidence angles, presents promising results and opens the way to more extensive oceanographic applications in SAR imagery.
Sentinel-1海洋SAR图像分割的初步方法与评价
本文首次将海洋SAR图像(Sentinel-1 A和B)分割为10类大气海洋现象,分辨率为400米。海洋SAR图像分割不同于经典的深度学习问题,具有高度多样化的形状和特别重要的高频模式。为此,对深度学习框架进行了评估,重点是弱监督和监督方法之间的比较。基于Wassertein距离的度量表明,在给定操作约束的情况下,监督分割(U-Net)具有最佳性能,从而突出了正确注释数据集的重要性。虽然可用的训练数据集是由小的$20 \ × 20 \text{km}$图像组成的,但将图像推断扩展到具有更广泛入射角的宽条图像,呈现出有希望的结果,并为更广泛的海洋应用开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信