The Effect of Class Imbalance Against LVQ Classification

Rahmad Abdillah, Suwanto Sanjaya, Iis Afrianty
{"title":"The Effect of Class Imbalance Against LVQ Classification","authors":"Rahmad Abdillah, Suwanto Sanjaya, Iis Afrianty","doi":"10.1109/ICon-EEI.2018.8784330","DOIUrl":null,"url":null,"abstract":"Accuracy is a measure of the capability of an algorithm, and studies use different classification methods to improve this benchmark. However, improper data collection adversely affects accuracy. In this study, we discuss how to influence the accuracy of data collection mechanisms. The learning vector quantization (LVQ) algorithm is tested to determine the effect of data sampling on accuracy. Training and test data are gathered in the data collection process. Results show that sampling techniques and retrieval of training and test data influence the accuracy of the LVQ classification method. Therefore, the chosen sampling technique can improve accuracy relative to overall data usage.","PeriodicalId":114952,"journal":{"name":"2018 2nd International Conference on Electrical Engineering and Informatics (ICon EEI)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 2nd International Conference on Electrical Engineering and Informatics (ICon EEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICon-EEI.2018.8784330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Accuracy is a measure of the capability of an algorithm, and studies use different classification methods to improve this benchmark. However, improper data collection adversely affects accuracy. In this study, we discuss how to influence the accuracy of data collection mechanisms. The learning vector quantization (LVQ) algorithm is tested to determine the effect of data sampling on accuracy. Training and test data are gathered in the data collection process. Results show that sampling techniques and retrieval of training and test data influence the accuracy of the LVQ classification method. Therefore, the chosen sampling technique can improve accuracy relative to overall data usage.
职业不平衡对LVQ分类的影响
准确性是对算法能力的衡量,研究使用不同的分类方法来提高这一基准。然而,数据收集不当会影响准确性。在本研究中,我们讨论了如何影响数据收集机制的准确性。测试了学习向量量化(LVQ)算法,以确定数据采样对精度的影响。在数据收集过程中收集训练和测试数据。结果表明,采样技术以及训练和测试数据的检索影响LVQ分类方法的准确性。因此,所选择的采样技术可以提高相对于总体数据使用的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信