Federated Learning Based Proactive Handover in Millimeter-wave Vehicular Networks

Kaiqiang Qi, Tingting Liu, Chenyang Yang
{"title":"Federated Learning Based Proactive Handover in Millimeter-wave Vehicular Networks","authors":"Kaiqiang Qi, Tingting Liu, Chenyang Yang","doi":"10.1109/ICSP48669.2020.9320974","DOIUrl":null,"url":null,"abstract":"Proactive handover can avoid frequent handovers and reduce handover delay, which plays an important role in maintaining the quality of service (QoS) for mobile users in millimeter-wave vehicular networks. To reduce the communication cost of training the learning model for proactive handover, we propose a federated learning (FL) framework. The proposed FL framework can accommodate the limited storage capacity of each user, increase the number of users who participate in the FL, and adapt to the dynamic mobility pattern. Simulation results validate the effectiveness of the proposed FL framework. Compared to reactive handover schemes, the proposed handover scheme can reduce the unnecessary handovers and improve the QoS of users simultaneously.","PeriodicalId":237073,"journal":{"name":"2020 15th IEEE International Conference on Signal Processing (ICSP)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th IEEE International Conference on Signal Processing (ICSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSP48669.2020.9320974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Proactive handover can avoid frequent handovers and reduce handover delay, which plays an important role in maintaining the quality of service (QoS) for mobile users in millimeter-wave vehicular networks. To reduce the communication cost of training the learning model for proactive handover, we propose a federated learning (FL) framework. The proposed FL framework can accommodate the limited storage capacity of each user, increase the number of users who participate in the FL, and adapt to the dynamic mobility pattern. Simulation results validate the effectiveness of the proposed FL framework. Compared to reactive handover schemes, the proposed handover scheme can reduce the unnecessary handovers and improve the QoS of users simultaneously.
基于联邦学习的毫米波车辆网络主动切换
主动切换可以避免频繁的切换,减少切换延迟,对保持毫米波车载网络中移动用户的服务质量(QoS)具有重要作用。为了降低训练主动切换学习模型的通信成本,提出了一种联邦学习框架。该框架可以满足每个用户有限的存储容量,增加参与FL的用户数量,并适应动态移动模式。仿真结果验证了该框架的有效性。与被动切换方案相比,本文提出的切换方案可以减少不必要的切换,同时提高用户的QoS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信