Investigation of simply coded evolutionary artificial neural networks on robot control problems

Y. Katada, Jun Nakazawa
{"title":"Investigation of simply coded evolutionary artificial neural networks on robot control problems","authors":"Y. Katada, Jun Nakazawa","doi":"10.1109/CEC.2008.4631088","DOIUrl":null,"url":null,"abstract":"One of the advantages of evolutionary robotics over other approaches in embodied cognitive science would be its parallel population search. Due to the population search, it takes a long time to evaluate all robot in a real environment. Thus, such techniques as to shorten the time are required for real robots to evolve in a real environment. This paper proposes to use simply coded evolutionary artificial neural networks for robot control to make genetic search space as small as possible and investigates the performance of them using simulated robots. Two types of genetic algorithm (GAs) are employed, one is the standard GA and the other is an extended GA, to achieve higher final fitnesses as well as achieve high fitnesses faster. The results suggest the benefits of the proposed method.","PeriodicalId":328803,"journal":{"name":"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2008.4631088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

One of the advantages of evolutionary robotics over other approaches in embodied cognitive science would be its parallel population search. Due to the population search, it takes a long time to evaluate all robot in a real environment. Thus, such techniques as to shorten the time are required for real robots to evolve in a real environment. This paper proposes to use simply coded evolutionary artificial neural networks for robot control to make genetic search space as small as possible and investigates the performance of them using simulated robots. Two types of genetic algorithm (GAs) are employed, one is the standard GA and the other is an extended GA, to achieve higher final fitnesses as well as achieve high fitnesses faster. The results suggest the benefits of the proposed method.
简单编码进化人工神经网络在机器人控制问题上的研究
进化机器人相较于具身认知科学中其他方法的优势之一是它的并行种群搜索。由于种群搜索,在真实环境中对所有机器人进行评估需要很长时间。因此,这种缩短时间的技术是真正的机器人在真实环境中进化所必需的。本文提出采用简单编码进化人工神经网络进行机器人控制,使遗传搜索空间尽可能小,并利用仿真机器人对其性能进行了研究。采用两种遗传算法,一种是标准遗传算法,另一种是扩展遗传算法,以获得更高的最终适应度,并更快地获得高适应度。结果表明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信