Parametric Instability of Tapered Beams by Finite Element Method

P. K. Datta, S. Chakraborty
{"title":"Parametric Instability of Tapered Beams by Finite Element Method","authors":"P. K. Datta, S. Chakraborty","doi":"10.1243/JMES_JOUR_1982_024_038_02","DOIUrl":null,"url":null,"abstract":"The dynamic stability behaviour of a tapered beam has been studied using a finite element analysis. The instability zones of the parametric stability diagram have been discussed for the entire ranges of static and dynamic load factors. It has been observed that at high values of static load and beyond a particular value of the dynamic load factor, the periodic solution of the Mathieu equation does not exist in the principal region. This leads to unstable behaviour due to large displacement of the beam due to increasing values of static and dynamic load factors.","PeriodicalId":114598,"journal":{"name":"Archive: Journal of Mechanical Engineering Science 1959-1982 (vols 1-23)","volume":"205 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1982-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive: Journal of Mechanical Engineering Science 1959-1982 (vols 1-23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1243/JMES_JOUR_1982_024_038_02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The dynamic stability behaviour of a tapered beam has been studied using a finite element analysis. The instability zones of the parametric stability diagram have been discussed for the entire ranges of static and dynamic load factors. It has been observed that at high values of static load and beyond a particular value of the dynamic load factor, the periodic solution of the Mathieu equation does not exist in the principal region. This leads to unstable behaviour due to large displacement of the beam due to increasing values of static and dynamic load factors.
锥形梁的参数失稳有限元法
本文采用有限元方法研究了锥形梁的动力稳定特性。讨论了静、动荷载系数全范围内参数稳定图的失稳区。在高静荷载和超过动荷载系数的某一特定值时,Mathieu方程的周期解在主区不存在。这导致不稳定的行为,由于大位移梁由于增加的静态和动态载荷系数的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信