Fully automatic 3D facial expression recognition using a region-based approach

J-HGBU '11 Pub Date : 2011-12-01 DOI:10.1145/2072572.2072589
Pierre Lemaire, B. Amor, M. Ardabilian, Liming Chen, M. Daoudi
{"title":"Fully automatic 3D facial expression recognition using a region-based approach","authors":"Pierre Lemaire, B. Amor, M. Ardabilian, Liming Chen, M. Daoudi","doi":"10.1145/2072572.2072589","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of automatic 3D facial expression recognition. Automatic 3D Facial Expression Recognition techniques are generally limited in that they require manual, precise landmark points. Here, we propose a framework capable of handling the potential imprecision of automatic landmarking techniques, thanks to a region approach. After an automatic feature point localization step, we cluster the face into several regions, chosen for their importance into the facial expression process, according to the Facial Action Coding System (FACS) and anatomic considerations. Then, we match those regions to reference models representing the six prototypical expressions using Iterative Closest Points (ICP). ICP tends to compensate the imprecisions in the face clustering relative to landmarks localization. Resulting matching scores are concatenated into a descriptor for the probe model. Finally, we use a standard classification tool; in our experiments, we used Support Vector Machines (SVM), and were able to provide comparable results to existing 3D FER methods over the same protocol, while being fully automatic.","PeriodicalId":404943,"journal":{"name":"J-HGBU '11","volume":"128 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J-HGBU '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2072572.2072589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

In this paper, we address the problem of automatic 3D facial expression recognition. Automatic 3D Facial Expression Recognition techniques are generally limited in that they require manual, precise landmark points. Here, we propose a framework capable of handling the potential imprecision of automatic landmarking techniques, thanks to a region approach. After an automatic feature point localization step, we cluster the face into several regions, chosen for their importance into the facial expression process, according to the Facial Action Coding System (FACS) and anatomic considerations. Then, we match those regions to reference models representing the six prototypical expressions using Iterative Closest Points (ICP). ICP tends to compensate the imprecisions in the face clustering relative to landmarks localization. Resulting matching scores are concatenated into a descriptor for the probe model. Finally, we use a standard classification tool; in our experiments, we used Support Vector Machines (SVM), and were able to provide comparable results to existing 3D FER methods over the same protocol, while being fully automatic.
使用基于区域的方法全自动3D面部表情识别
本文主要研究三维面部表情的自动识别问题。自动3D面部表情识别技术通常受到限制,因为它们需要手动,精确的地标点。在这里,我们提出了一个框架,能够处理潜在的不精确的自动地标技术,感谢区域方法。在自动特征点定位步骤之后,我们根据面部动作编码系统(FACS)和解剖学的考虑,将面部聚类成几个区域,并根据它们在面部表情过程中的重要性进行选择。然后,我们使用迭代最近点(ICP)将这些区域与代表六个原型表达式的参考模型进行匹配。相对于地标定位,ICP倾向于补偿人脸聚类的不精确性。结果匹配分数被连接到探测模型的描述符中。最后,我们使用标准的分类工具;在我们的实验中,我们使用了支持向量机(SVM),并且能够在相同的协议上提供与现有3D FER方法相当的结果,同时是全自动的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信