{"title":"Detection and mitigation of pilot spoofing attack","authors":"Jitendra Tugnait","doi":"10.1109/ACSSC.2017.8335643","DOIUrl":null,"url":null,"abstract":"In a time-division duplex (TDD) multiple antenna system, the channel state information (CSI) can be estimated using reverse training. A pilot contamination (spoofing) attack occurs when during the training phase, an adversary (spoofer) also sends identical training (pilot) signal as that of the legitimate receiver. This contaminates channel estimation and alters the legitimate beamforming design, facilitating eavesdropping. A recent approach proposed superimposing a random sequence on the training sequence at the legitimate receiver and then using the minimum description length (MDL) criterion to detect pilot contamination attack. In this paper we augment this approach with joint estimation of both legitimate receiver and eavesdropper channels, and secure beamforming, to mitigate the effects of pilot spoofing. We consider two cases: (i) the spoofer transmits only the pilot signal, (ii) the spoofer also adds a random sequence to its pilot. The proposed mitigation approach is illustrated via simulations.","PeriodicalId":296208,"journal":{"name":"2017 51st Asilomar Conference on Signals, Systems, and Computers","volume":"20 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 51st Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2017.8335643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In a time-division duplex (TDD) multiple antenna system, the channel state information (CSI) can be estimated using reverse training. A pilot contamination (spoofing) attack occurs when during the training phase, an adversary (spoofer) also sends identical training (pilot) signal as that of the legitimate receiver. This contaminates channel estimation and alters the legitimate beamforming design, facilitating eavesdropping. A recent approach proposed superimposing a random sequence on the training sequence at the legitimate receiver and then using the minimum description length (MDL) criterion to detect pilot contamination attack. In this paper we augment this approach with joint estimation of both legitimate receiver and eavesdropper channels, and secure beamforming, to mitigate the effects of pilot spoofing. We consider two cases: (i) the spoofer transmits only the pilot signal, (ii) the spoofer also adds a random sequence to its pilot. The proposed mitigation approach is illustrated via simulations.