Indoor Place Categorization Using Co-occurrences of LBPs in Gray and Depth Images from RGB-D Sensors

Hojung Jung, Óscar Martínez Mozos, Y. Iwashita, R. Kurazume
{"title":"Indoor Place Categorization Using Co-occurrences of LBPs in Gray and Depth Images from RGB-D Sensors","authors":"Hojung Jung, Óscar Martínez Mozos, Y. Iwashita, R. Kurazume","doi":"10.1109/EST.2014.23","DOIUrl":null,"url":null,"abstract":"Indoor place categorization is an important capability for service robots working and interacting in human environments. This paper presents a new place categorization method which uses information about the spatial correlation between the different image modalities provided by RGB-D sensors. Our approach applies co-occurrence histograms of local binary patterns (LBPs) from gray and depth images that correspond to the same indoor scene. The resulting histograms are used as feature vectors in a supervised classifier. Our experimental results show the effectiveness of our method to categorize indoor places using RGB-D cameras.","PeriodicalId":193536,"journal":{"name":"2014 Fifth International Conference on Emerging Security Technologies","volume":"30 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Fifth International Conference on Emerging Security Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EST.2014.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Indoor place categorization is an important capability for service robots working and interacting in human environments. This paper presents a new place categorization method which uses information about the spatial correlation between the different image modalities provided by RGB-D sensors. Our approach applies co-occurrence histograms of local binary patterns (LBPs) from gray and depth images that correspond to the same indoor scene. The resulting histograms are used as feature vectors in a supervised classifier. Our experimental results show the effectiveness of our method to categorize indoor places using RGB-D cameras.
基于RGB-D传感器灰度和深度图像中lbp共现的室内场所分类
室内场所分类是服务机器人在人类环境中工作和交互的重要能力。本文提出了一种利用RGB-D传感器提供的不同图像模态之间的空间相关性信息进行地点分类的新方法。我们的方法应用了对应于相同室内场景的灰度和深度图像的局部二值模式(lbp)的共现直方图。得到的直方图用作有监督分类器中的特征向量。实验结果表明,采用RGB-D相机对室内场所进行分类是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信