Linearization of the Wave Spectrum: A Comparison of Methods

D. Barratt, H. Bingham, P. Taylor, T. V. D. Bremer, T. Adcock
{"title":"Linearization of the Wave Spectrum: A Comparison of Methods","authors":"D. Barratt, H. Bingham, P. Taylor, T. V. D. Bremer, T. Adcock","doi":"10.1115/omae2020-18820","DOIUrl":null,"url":null,"abstract":"\n The relative contributions of free waves and bound waves to the formation of an extreme wave event remains a topic of interest in offshore engineering. A variety of methods have been proposed for identifying and removing the bound wave components. The method of “phase separation” or “phase manipulation” repeats simulations/experiments of a wave field with an offset in the initial phase of the wave components and relies upon summation of the resulting wave fields to isolate the bound harmonics, following from a Stokes expansion in steepness; the method has proven effective in isolating bound harmonics but requires that all cases be repeated. Alternatively, the bound harmonics can be removed using a three-dimensional fast Fourier transform (3D-FFT) of the wave field. However, the Fourier transform requires periodicity in the signal and assumes homogeneity in space and stationarity in time, producing spurious modes otherwise. We compare the phase separation and 3D-FFT approaches for a steep, focusing wave group in deep water using the numerical simulation tool, OceanWave3D, and discuss the effectiveness of both methods.","PeriodicalId":297013,"journal":{"name":"Volume 2A: Structures, Safety, and Reliability","volume":"459 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: Structures, Safety, and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2020-18820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The relative contributions of free waves and bound waves to the formation of an extreme wave event remains a topic of interest in offshore engineering. A variety of methods have been proposed for identifying and removing the bound wave components. The method of “phase separation” or “phase manipulation” repeats simulations/experiments of a wave field with an offset in the initial phase of the wave components and relies upon summation of the resulting wave fields to isolate the bound harmonics, following from a Stokes expansion in steepness; the method has proven effective in isolating bound harmonics but requires that all cases be repeated. Alternatively, the bound harmonics can be removed using a three-dimensional fast Fourier transform (3D-FFT) of the wave field. However, the Fourier transform requires periodicity in the signal and assumes homogeneity in space and stationarity in time, producing spurious modes otherwise. We compare the phase separation and 3D-FFT approaches for a steep, focusing wave group in deep water using the numerical simulation tool, OceanWave3D, and discuss the effectiveness of both methods.
波谱的线性化:方法的比较
自由波和束缚波对极端波浪事件形成的相对贡献一直是近海工程中感兴趣的话题。已经提出了多种方法来识别和去除束缚波分量。“相位分离”或“相位操纵”方法重复波场的模拟/实验,在波分量的初始相位有偏移,并依赖于所得波场的总和来隔离边界谐波,随后在陡度上进行斯托克斯展开;该方法在隔离边界谐波方面已被证明是有效的,但需要重复所有的情况。另外,可以使用波场的三维快速傅里叶变换(3D-FFT)去除束缚谐波。然而,傅里叶变换要求信号具有周期性,并且假定信号在空间上均匀,在时间上平稳,否则会产生杂散模式。我们利用数值模拟工具OceanWave3D对深水陡峭聚焦波群的相位分离和3D-FFT方法进行了比较,并讨论了两种方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信