{"title":"Introductory Chapter: Advanced Ocean Current Simulation from TanDEM Satellite Data","authors":"M. Marghany","doi":"10.5772/INTECHOPEN.84644","DOIUrl":null,"url":null,"abstract":"Satellite microwave data, such as synthetic aperture radar (SAR), have the great potential for retrieving ocean dynamic parameters, for instance, ocean surface current and ocean wave dynamic [1]. One of the attention-grabbing topics is current flow that is needed for short go back satellite cycle and high resolution. These will provide precisely data concerning current dynamic flow [2, 3]. In fact, current is very important for ship navigation, fishing, waste matter substances transport, and sediment transport [4, 5]. Respectively, optical and microwave sensors are enforced to monitor the current flows. Indeed, the ocean surface dynamic options of sea surface current are vital parameters for atmospheric-sea surface interactions. In this regard, the global climate change, marine pollution, and coastal risky are preponderantly dominated by current speed and direction [1]. The measurements of ocean current from space rely on the electromagnetic signal. Truly, associate degree of an electromagnetic signal of optical and microwave reflects from the ocean carrying records concerning one among the first discernible quantities that are the color, the beamy temperature, the roughness, and also the height of the ocean [2]. Recently, the high resolution of SAR sensors such as TerraSar-X, RADARSAT-2, ALOS PALSAR, and the foremost three of the Italian satellite of COSMO-SkyMed have been commenced. Once the four satellites in the COSMO-SkyMed constellation are developed, they are conceivable functioning with a tiny resume time of a little hours [4]. Nevertheless, the initial three of the COSMO-SkyMed, ALOS PALSAR, and RADARSAT-2, satellite data are the cross-track interferometry, which do not allow determining neither coastal water flow nor coastal water level changing. In this regard, the TerraSAR-X satellite data use an along-track interferometric proficiency which simply permits the quantity of sea surface speed. Additionally, phase alterations between the coregistered pixels of an image pair are consistent to Doppler frequency shifts of the signal backscattered and according to line-of-sight velocities of the scatterers. In this view, phase alterations include influences of surface flows and of the dynamic of wave movement. Consequently, the retrieving of tidal current flow can be accurately achieved by both of TerraSAR-X and TanDEM-X. These can be depleted to regulate precisely coastal water height fluctuations. The TerraSAR-X can regulate perfectly the digital surface model (DSM), where depiction of surface-containing topographies exceeds the terrain height, for example, plants and constructions through precision of 2 m. Moreover, TanDEM-X involves dual high-resolution imaging SAR data. In this understanding, both TerraSAR-X and TanDEM-X are hovering in tandem and establishing an enormous radar interferometer with an anticipated competence of creating a comprehensive DSM through a perpendicular resolution of 2 m, exceeding","PeriodicalId":308924,"journal":{"name":"Advanced Remote Sensing Technology for Synthetic Aperture Radar Applications, Tsunami Disasters, and Infrastructure","volume":"39 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Remote Sensing Technology for Synthetic Aperture Radar Applications, Tsunami Disasters, and Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.84644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Satellite microwave data, such as synthetic aperture radar (SAR), have the great potential for retrieving ocean dynamic parameters, for instance, ocean surface current and ocean wave dynamic [1]. One of the attention-grabbing topics is current flow that is needed for short go back satellite cycle and high resolution. These will provide precisely data concerning current dynamic flow [2, 3]. In fact, current is very important for ship navigation, fishing, waste matter substances transport, and sediment transport [4, 5]. Respectively, optical and microwave sensors are enforced to monitor the current flows. Indeed, the ocean surface dynamic options of sea surface current are vital parameters for atmospheric-sea surface interactions. In this regard, the global climate change, marine pollution, and coastal risky are preponderantly dominated by current speed and direction [1]. The measurements of ocean current from space rely on the electromagnetic signal. Truly, associate degree of an electromagnetic signal of optical and microwave reflects from the ocean carrying records concerning one among the first discernible quantities that are the color, the beamy temperature, the roughness, and also the height of the ocean [2]. Recently, the high resolution of SAR sensors such as TerraSar-X, RADARSAT-2, ALOS PALSAR, and the foremost three of the Italian satellite of COSMO-SkyMed have been commenced. Once the four satellites in the COSMO-SkyMed constellation are developed, they are conceivable functioning with a tiny resume time of a little hours [4]. Nevertheless, the initial three of the COSMO-SkyMed, ALOS PALSAR, and RADARSAT-2, satellite data are the cross-track interferometry, which do not allow determining neither coastal water flow nor coastal water level changing. In this regard, the TerraSAR-X satellite data use an along-track interferometric proficiency which simply permits the quantity of sea surface speed. Additionally, phase alterations between the coregistered pixels of an image pair are consistent to Doppler frequency shifts of the signal backscattered and according to line-of-sight velocities of the scatterers. In this view, phase alterations include influences of surface flows and of the dynamic of wave movement. Consequently, the retrieving of tidal current flow can be accurately achieved by both of TerraSAR-X and TanDEM-X. These can be depleted to regulate precisely coastal water height fluctuations. The TerraSAR-X can regulate perfectly the digital surface model (DSM), where depiction of surface-containing topographies exceeds the terrain height, for example, plants and constructions through precision of 2 m. Moreover, TanDEM-X involves dual high-resolution imaging SAR data. In this understanding, both TerraSAR-X and TanDEM-X are hovering in tandem and establishing an enormous radar interferometer with an anticipated competence of creating a comprehensive DSM through a perpendicular resolution of 2 m, exceeding