Completeness criteria in many-valued set logic under compositions with Boolean functions

I. Stojmenovic
{"title":"Completeness criteria in many-valued set logic under compositions with Boolean functions","authors":"I. Stojmenovic","doi":"10.1109/ISMVL.1994.302203","DOIUrl":null,"url":null,"abstract":"Discusses the functional completeness problems in r-valued set logic, which is the logic of functions mapping n-tuples of subsets into subsets over r values. Boolean functions are convenient choice as building blocks in the design of set logic functions. A set of functions F is Boolean complete if any set logic function can be composed from F once all Boolean functions are added to F. The paper proves that there are 2/sup r/-2 Boolean maximal sets in r-valued set logic and gives their description using equivalence relations. A set F is then Boolean complete if it is not a subset of any of these 2/sup r/-2 Boolean maximal sets, which is a completeness criteria in many-valued set logic under compositions with Boolean functions.<<ETX>>","PeriodicalId":137138,"journal":{"name":"Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94)","volume":"22 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1994.302203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Discusses the functional completeness problems in r-valued set logic, which is the logic of functions mapping n-tuples of subsets into subsets over r values. Boolean functions are convenient choice as building blocks in the design of set logic functions. A set of functions F is Boolean complete if any set logic function can be composed from F once all Boolean functions are added to F. The paper proves that there are 2/sup r/-2 Boolean maximal sets in r-valued set logic and gives their description using equivalence relations. A set F is then Boolean complete if it is not a subset of any of these 2/sup r/-2 Boolean maximal sets, which is a completeness criteria in many-valued set logic under compositions with Boolean functions.<>
布尔函数复合下多值集合逻辑的完备性准则
讨论了r值集合逻辑中的函数完备性问题,r值集合逻辑是函数将子集的n元组映射到r值上的子集的逻辑。布尔函数是设计集合逻辑函数的方便选择。如果把所有的布尔函数加到F上,F可以组成任何一个集逻辑函数,则函数集F是布尔完全的。本文证明了在r值集逻辑中存在2/sup r/ 2个布尔极大集,并用等价关系给出了它们的描述。如果一个集合F不是这2/sup r/-2个布尔极大集的子集,则它是布尔完备的,这是布尔函数复合下多值集合逻辑中的完备性准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信