Understanding complex matter from simple packing models

T. Aste, G. Delaney, T. Di Matteo
{"title":"Understanding complex matter from simple packing models","authors":"T. Aste, G. Delaney, T. Di Matteo","doi":"10.1117/12.759030","DOIUrl":null,"url":null,"abstract":"By pouring equal balls into a container one obtains disordered packings with fascinating properties which might shed light on several elusive properties of complex materials such as amorphous metals or colloids. In any real experiment with equal-sized spheres one cannot reach packing fractions (fraction of volume occupied by the spheres respect to the total volume, ρ) below the Random Loose Packing limit (RLP, ρ ~ 0.555) or above the Random Close Packing limit (RCP, ρ ~ 0.645) unless order is externally induced. What is happening at these two limits is an open unanswered question. In this paper we address this question by combining statistical geometry and statistical mechanics methods. Evidences of phase transitions occurring at the RLP and RCP limits are reported.","PeriodicalId":320411,"journal":{"name":"SPIE Micro + Nano Materials, Devices, and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Micro + Nano Materials, Devices, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.759030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By pouring equal balls into a container one obtains disordered packings with fascinating properties which might shed light on several elusive properties of complex materials such as amorphous metals or colloids. In any real experiment with equal-sized spheres one cannot reach packing fractions (fraction of volume occupied by the spheres respect to the total volume, ρ) below the Random Loose Packing limit (RLP, ρ ~ 0.555) or above the Random Close Packing limit (RCP, ρ ~ 0.645) unless order is externally induced. What is happening at these two limits is an open unanswered question. In this paper we address this question by combining statistical geometry and statistical mechanics methods. Evidences of phase transitions occurring at the RLP and RCP limits are reported.
从简单的包装模型理解复杂的物质
将等量的球倒入容器中,可以得到具有迷人性质的无序填料,这可能会揭示诸如非晶态金属或胶体等复杂材料的一些难以捉摸的性质。在任何实际的等大小球体实验中,除非外部诱导有序,否则不可能达到填充分数(球体所占体积相对于总体积的比例,ρ)低于随机松散填充极限(RLP, ρ ~ 0.555)或高于随机紧密填充极限(RCP, ρ ~ 0.645)。在这两个极限上发生了什么是一个悬而未决的问题。在本文中,我们结合统计几何和统计力学的方法来解决这个问题。报道了在RLP和RCP极限处发生相变的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信