On Stubborn Graph Sandwich Problems

S. Dantas, L. Faria
{"title":"On Stubborn Graph Sandwich Problems","authors":"S. Dantas, L. Faria","doi":"10.1109/ICCGI.2007.41","DOIUrl":null,"url":null,"abstract":"The stubborn partition is a partition of the vertex set of a graph G into at most four parts A, B, C, D, with the following constraints: the internal constraints are part A and part B are required to be independent sets, and part D is required to be a clique; the only external constraint is that each vertex of part A is nonadjacent to every vertex of part C. This problem is generalized to the list sandwich version: given two graphs G<sup>1</sup> = (V, E<sup>1</sup>), G<sup>2</sup> = (V,E<sup>2</sup>) such that if E<sup>1</sup> sube E<sup>2</sup>, and for each vertex a list of parts in which the vertex is allowed to be placed, we look for a stubborn sandwich graph G = (V, E) such that E<sup>1</sup> sube E sube E<sup>2</sup>. In this paper, we prove that the LIST STUBBORN GRAPH SANDWICH PROBLEM is N/P-complete.","PeriodicalId":102568,"journal":{"name":"2007 International Multi-Conference on Computing in the Global Information Technology (ICCGI'07)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Multi-Conference on Computing in the Global Information Technology (ICCGI'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCGI.2007.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The stubborn partition is a partition of the vertex set of a graph G into at most four parts A, B, C, D, with the following constraints: the internal constraints are part A and part B are required to be independent sets, and part D is required to be a clique; the only external constraint is that each vertex of part A is nonadjacent to every vertex of part C. This problem is generalized to the list sandwich version: given two graphs G1 = (V, E1), G2 = (V,E2) such that if E1 sube E2, and for each vertex a list of parts in which the vertex is allowed to be placed, we look for a stubborn sandwich graph G = (V, E) such that E1 sube E sube E2. In this paper, we prove that the LIST STUBBORN GRAPH SANDWICH PROBLEM is N/P-complete.
关于顽固图三明治问题
顽固性划分是将图G的顶点集划分为a、B、C、D四个部分,其约束条件为:内部约束要求a、B部分为独立集,D部分为团;唯一的外部约束是部分A的每个顶点与部分c的每个顶点不相邻。这个问题被推广到列表夹层版本:给定两个图G1 = (V, E1), G2 = (V,E2),使得如果E1从E2,并且对于每个顶点都有一个允许放置顶点的部分列表,我们寻找一个顽固的夹层图G = (V,E),使得E1从E从E2。本文证明了LIST顽固性图夹层问题是N/ p完全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信