A New Method Using LLMs for Keypoints Generation in Qualitative Data Analysis

Fengxiang Zhao, Fan Yu, T. Trull, Yi Shang
{"title":"A New Method Using LLMs for Keypoints Generation in Qualitative Data Analysis","authors":"Fengxiang Zhao, Fan Yu, T. Trull, Yi Shang","doi":"10.1109/CAI54212.2023.00147","DOIUrl":null,"url":null,"abstract":"Qualitative data analysis (QDA) is useful for identifying patterns, themes, and relationships among data. In this paper, we propose a new method that uses large language models (LLMs), such as GPT-based Models, to improve QDA, in Ecological Momentary Assessment (EMA) studies as an example, by automating keypoints extraction and relevance evaluation. Experimental results on the IBM-ArgKP-2021 dataset show improved performance of the new method over existing work, achieving higher accuracy while reducing time and effort in the coding process of QDA, and demonstrate the effectiveness of our proposed method in various application settings.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Qualitative data analysis (QDA) is useful for identifying patterns, themes, and relationships among data. In this paper, we propose a new method that uses large language models (LLMs), such as GPT-based Models, to improve QDA, in Ecological Momentary Assessment (EMA) studies as an example, by automating keypoints extraction and relevance evaluation. Experimental results on the IBM-ArgKP-2021 dataset show improved performance of the new method over existing work, achieving higher accuracy while reducing time and effort in the coding process of QDA, and demonstrate the effectiveness of our proposed method in various application settings.
一种利用llm生成定性数据分析关键点的新方法
定性数据分析(QDA)对于识别模式、主题和数据之间的关系非常有用。本文以生态瞬间评价(EMA)研究为例,提出了一种利用基于gtp模型的大型语言模型(LLMs),通过自动化关键点提取和相关性评价来改进QDA的方法。在IBM-ArgKP-2021数据集上的实验结果表明,新方法的性能比现有方法有所提高,在提高QDA编码精度的同时减少了编码过程中的时间和精力,并证明了我们提出的方法在各种应用环境中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信