{"title":"FeatureMiner: A Tool for Interactive Feature Selection","authors":"Kewei Cheng, Jundong Li, Huan Liu","doi":"10.1145/2983323.2983329","DOIUrl":null,"url":null,"abstract":"The recent popularity of big data has brought immense quantities of high-dimensional data, which presents challenges to traditional data mining tasks due to curse of dimensionality. Feature selection has shown to be effective to prepare these high dimensional data for a variety of learning tasks. To provide easy access to feature selection algorithms, we provide an interactive feature selection tool FeatureMiner based on our recently released feature selection repository scikit-feature. FeatureMiner eases the process of performing feature selection for practitioners by providing an interactive user interface. Meanwhile, it also gives users some practical guidance in finding a suitable feature selection algorithm among many given a specific dataset. In this demonstration, we show (1) How to conduct data preprocessing after loading a dataset; (2) How to apply feature selection algorithms; (3) How to choose a suitable algorithm by visualized performance evaluation.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"14 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
The recent popularity of big data has brought immense quantities of high-dimensional data, which presents challenges to traditional data mining tasks due to curse of dimensionality. Feature selection has shown to be effective to prepare these high dimensional data for a variety of learning tasks. To provide easy access to feature selection algorithms, we provide an interactive feature selection tool FeatureMiner based on our recently released feature selection repository scikit-feature. FeatureMiner eases the process of performing feature selection for practitioners by providing an interactive user interface. Meanwhile, it also gives users some practical guidance in finding a suitable feature selection algorithm among many given a specific dataset. In this demonstration, we show (1) How to conduct data preprocessing after loading a dataset; (2) How to apply feature selection algorithms; (3) How to choose a suitable algorithm by visualized performance evaluation.