{"title":"Intermittent Jamming against Telemetry and Telecommand of Satellite Systems and A Learning-driven Detection Strategy","authors":"Selen Gecgel, Günes Karabulut-Kurt","doi":"10.1145/3468218.3469041","DOIUrl":null,"url":null,"abstract":"Towards sixth-generation networks (6G), satellite communication systems, especially based on Low Earth Orbit (LEO) networks, become promising due to their unique and comprehensive capabilities. These advantages are accompanied by a variety of challenges such as security vulnerabilities, management of hybrid systems, and high mobility. In this paper, firstly, a security deficiency in the physical layer is addressed with a conceptual framework, considering the cyber-physical nature of the satellite systems, highlighting the potential attacks. Secondly, a learning-driven detection scheme is proposed, and the lightweight convolutional neural network (CNN) is designed. The performance of the designed CNN architecture is compared with a prevalent machine learning algorithm, support vector machine (SVM). The results show that deficiency attacks against the satellite systems can be detected by employing the proposed scheme.","PeriodicalId":318719,"journal":{"name":"Proceedings of the 3rd ACM Workshop on Wireless Security and Machine Learning","volume":"9 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd ACM Workshop on Wireless Security and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3468218.3469041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Towards sixth-generation networks (6G), satellite communication systems, especially based on Low Earth Orbit (LEO) networks, become promising due to their unique and comprehensive capabilities. These advantages are accompanied by a variety of challenges such as security vulnerabilities, management of hybrid systems, and high mobility. In this paper, firstly, a security deficiency in the physical layer is addressed with a conceptual framework, considering the cyber-physical nature of the satellite systems, highlighting the potential attacks. Secondly, a learning-driven detection scheme is proposed, and the lightweight convolutional neural network (CNN) is designed. The performance of the designed CNN architecture is compared with a prevalent machine learning algorithm, support vector machine (SVM). The results show that deficiency attacks against the satellite systems can be detected by employing the proposed scheme.