{"title":"How to reach top accuracy for a visual pedestrian warning system from a car?","authors":"F. D. Smedt, Steven Puttemans, T. Goedemé","doi":"10.1109/IPTA.2016.7820997","DOIUrl":null,"url":null,"abstract":"Due to the wide applicability of pedestrian detection in surveillance and safety, this research topic has received much attention in computer vision literature. However, the focus of this research mainly lies in detecting and locating pedestrians individually as accurate as possible. In recent years, a number of datasets are captured using a forward looking camera from a car, which imposes the application of warning the driver when pedestrians are in front of the car. For such applications, it is not required to detect each pedestrian independently, but to generate an alarm when necessary. In this paper we explore techniques to boost the accuracy of recent channel-based algorithms in this application: algorithmic refinements as well as the inclusion of an LWIR image channel. We use the KAIST dataset which is constructed from image-pairs of both the visual and the LWIR spectrum, in day and night conditions. We study the influence of techniques that have shown success in literature.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7820997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Due to the wide applicability of pedestrian detection in surveillance and safety, this research topic has received much attention in computer vision literature. However, the focus of this research mainly lies in detecting and locating pedestrians individually as accurate as possible. In recent years, a number of datasets are captured using a forward looking camera from a car, which imposes the application of warning the driver when pedestrians are in front of the car. For such applications, it is not required to detect each pedestrian independently, but to generate an alarm when necessary. In this paper we explore techniques to boost the accuracy of recent channel-based algorithms in this application: algorithmic refinements as well as the inclusion of an LWIR image channel. We use the KAIST dataset which is constructed from image-pairs of both the visual and the LWIR spectrum, in day and night conditions. We study the influence of techniques that have shown success in literature.