How to reach top accuracy for a visual pedestrian warning system from a car?

F. D. Smedt, Steven Puttemans, T. Goedemé
{"title":"How to reach top accuracy for a visual pedestrian warning system from a car?","authors":"F. D. Smedt, Steven Puttemans, T. Goedemé","doi":"10.1109/IPTA.2016.7820997","DOIUrl":null,"url":null,"abstract":"Due to the wide applicability of pedestrian detection in surveillance and safety, this research topic has received much attention in computer vision literature. However, the focus of this research mainly lies in detecting and locating pedestrians individually as accurate as possible. In recent years, a number of datasets are captured using a forward looking camera from a car, which imposes the application of warning the driver when pedestrians are in front of the car. For such applications, it is not required to detect each pedestrian independently, but to generate an alarm when necessary. In this paper we explore techniques to boost the accuracy of recent channel-based algorithms in this application: algorithmic refinements as well as the inclusion of an LWIR image channel. We use the KAIST dataset which is constructed from image-pairs of both the visual and the LWIR spectrum, in day and night conditions. We study the influence of techniques that have shown success in literature.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7820997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Due to the wide applicability of pedestrian detection in surveillance and safety, this research topic has received much attention in computer vision literature. However, the focus of this research mainly lies in detecting and locating pedestrians individually as accurate as possible. In recent years, a number of datasets are captured using a forward looking camera from a car, which imposes the application of warning the driver when pedestrians are in front of the car. For such applications, it is not required to detect each pedestrian independently, but to generate an alarm when necessary. In this paper we explore techniques to boost the accuracy of recent channel-based algorithms in this application: algorithmic refinements as well as the inclusion of an LWIR image channel. We use the KAIST dataset which is constructed from image-pairs of both the visual and the LWIR spectrum, in day and night conditions. We study the influence of techniques that have shown success in literature.
如何从汽车上达到视觉行人警告系统的最高精度?
由于行人检测在监控和安全方面的广泛适用性,该研究课题在计算机视觉文献中受到了广泛的关注。然而,本研究的重点主要在于尽可能准确地检测和定位行人。近年来,许多数据集是使用汽车前视摄像头捕获的,当行人在汽车前面时,该摄像头强制应用于警告驾驶员。对于此类应用,不需要单独检测每个行人,而是在必要时产生警报。在本文中,我们探索了在此应用中提高最近基于信道的算法准确性的技术:算法改进以及包含LWIR图像通道。我们使用KAIST数据集,该数据集由白天和夜间条件下的视觉和LWIR光谱图像对构建而成。我们研究在文学中取得成功的技巧的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信