Tagging Chinese microblogger via sparse feature selection

R. Shang, Xinyu Dai, Shujian Huang, Yi Li, Jiajun Chen
{"title":"Tagging Chinese microblogger via sparse feature selection","authors":"R. Shang, Xinyu Dai, Shujian Huang, Yi Li, Jiajun Chen","doi":"10.1109/IJCNN.2016.7727505","DOIUrl":null,"url":null,"abstract":"In new media era, users post messages to record their daily lives and express their opinions via social media platforms, such as microblog. Recently, it is an attractive topic to tag users from the users generation contents. Tags for a microblog user, as the description for his/her interests, concerns or occupational characteristics, are playing an important role in user indexing, personalized recommendation, and so on. Previous works apply keyword extraction methods to present the interests of users. However, it is hard for keyword extraction to give accurate results when the data is deficient and noisy. In this paper, we propose a novel method to tag the users. Firstly, we apply feature selection via sparse classifier to generate preliminary tags for users. Then we also apply feature selection method to extend the tags. Finally, we refine the tags with a reranking strategy. We conduct our experiments on the data of the most popular Chinese microblog (Sina Weibo). The experimental results show that our method improves the performance significantly over other methods.","PeriodicalId":109405,"journal":{"name":"2016 International Joint Conference on Neural Networks (IJCNN)","volume":"24 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2016.7727505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In new media era, users post messages to record their daily lives and express their opinions via social media platforms, such as microblog. Recently, it is an attractive topic to tag users from the users generation contents. Tags for a microblog user, as the description for his/her interests, concerns or occupational characteristics, are playing an important role in user indexing, personalized recommendation, and so on. Previous works apply keyword extraction methods to present the interests of users. However, it is hard for keyword extraction to give accurate results when the data is deficient and noisy. In this paper, we propose a novel method to tag the users. Firstly, we apply feature selection via sparse classifier to generate preliminary tags for users. Then we also apply feature selection method to extend the tags. Finally, we refine the tags with a reranking strategy. We conduct our experiments on the data of the most popular Chinese microblog (Sina Weibo). The experimental results show that our method improves the performance significantly over other methods.
基于稀疏特征选择的中文微博标签
在新媒体时代,用户通过微博等社交媒体平台发布信息,记录自己的日常生活,表达自己的观点。从用户生成内容中对用户进行标记是近年来备受关注的一个话题。微博用户标签作为对其兴趣、关注点或职业特征的描述,在用户索引、个性化推荐等方面发挥着重要作用。以前的作品采用关键字提取方法来呈现用户的兴趣。然而,在数据不足和有噪声的情况下,关键词提取很难得到准确的结果。本文提出了一种新的用户标记方法。首先,我们通过稀疏分类器进行特征选择,为用户生成初步标签。然后应用特征选择方法对标签进行扩展。最后,我们使用重新排序策略来优化标签。我们在中国最受欢迎的微博(新浪微博)的数据上进行实验。实验结果表明,与其他方法相比,我们的方法显著提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信