ZXAD

A. Mani, I. Goldberg
{"title":"ZXAD","authors":"A. Mani, I. Goldberg","doi":"10.1145/3463676.3485609","DOIUrl":null,"url":null,"abstract":"The Tor anonymity network is often abused by attackers to (anonymously) convey attack traffic. These attacks abuse Tor exit relays (i.e., the relays through which traffic exits Tor) by making it appear the attack originates there; as a result, many website operators indiscriminately block all Tor traffic (by blacklisting all exit IPs), reducing the usefulness of Tor. Recent research shows that majority of these attacks are ones that generate high traffic volume (e.g., Denial-of-Service attacks). This suggests that a simple solution such as throttling traffic flow at the Tor exits may permit early detection of these attacks, improve overall reputation of exits, and eventually prevent blanket blocking of Tor exits. However, naively monitoring and throttling traffic at the Tor exits can endanger the privacy of the network's users. This paper introduces ZXAD (pronounced \"zed-zad\"), a zero-knowledge based private Tor exit abuse detection system that permits identification of otherwise unlinkable connections that are part of a high-volume attack. ZXAD does not reveal any information, apart from the fact that some user is conveying a high volume of traffic through Tor. We formally prove the correctness and security of ZXAD. We also measure two proof-of-concept implementations of our zero-knowledge proofs and show that ZXAD operates with low bandwidth and processing overheads.","PeriodicalId":205601,"journal":{"name":"Proceedings of the 20th Workshop on Workshop on Privacy in the Electronic Society","volume":"14 21","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th Workshop on Workshop on Privacy in the Electronic Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3463676.3485609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Tor anonymity network is often abused by attackers to (anonymously) convey attack traffic. These attacks abuse Tor exit relays (i.e., the relays through which traffic exits Tor) by making it appear the attack originates there; as a result, many website operators indiscriminately block all Tor traffic (by blacklisting all exit IPs), reducing the usefulness of Tor. Recent research shows that majority of these attacks are ones that generate high traffic volume (e.g., Denial-of-Service attacks). This suggests that a simple solution such as throttling traffic flow at the Tor exits may permit early detection of these attacks, improve overall reputation of exits, and eventually prevent blanket blocking of Tor exits. However, naively monitoring and throttling traffic at the Tor exits can endanger the privacy of the network's users. This paper introduces ZXAD (pronounced "zed-zad"), a zero-knowledge based private Tor exit abuse detection system that permits identification of otherwise unlinkable connections that are part of a high-volume attack. ZXAD does not reveal any information, apart from the fact that some user is conveying a high volume of traffic through Tor. We formally prove the correctness and security of ZXAD. We also measure two proof-of-concept implementations of our zero-knowledge proofs and show that ZXAD operates with low bandwidth and processing overheads.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信