Mohsen H. Alhazmi, Mofadal Alymani, Hatim Alhazmi, Alhussain Almarhabi, Abdullah Samarkandi, Yu-dong Yao
{"title":"5G Signal Identification Using Deep Learning","authors":"Mohsen H. Alhazmi, Mofadal Alymani, Hatim Alhazmi, Alhussain Almarhabi, Abdullah Samarkandi, Yu-dong Yao","doi":"10.1109/WOCC48579.2020.9114912","DOIUrl":null,"url":null,"abstract":"Spectrum awareness, including identifying different types of signals, is very important in a cellular system environment. In this paper, a neural network is utilized to identify 5G signals among different cellular communications signals, including Long-Term Evolution (LTE) and Universal Mobile Telecommunication Service (UMTS). We explore the use of deep learning in wireless communications systems. We consider the effects of training dataset size, features extracted, and channel fading in our study. Experiment results demonstrate the effectiveness of deep learning neural networks in identifying cellular system signals, including UMTS, LTE, and 5G.","PeriodicalId":187607,"journal":{"name":"2020 29th Wireless and Optical Communications Conference (WOCC)","volume":"40 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 29th Wireless and Optical Communications Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC48579.2020.9114912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Spectrum awareness, including identifying different types of signals, is very important in a cellular system environment. In this paper, a neural network is utilized to identify 5G signals among different cellular communications signals, including Long-Term Evolution (LTE) and Universal Mobile Telecommunication Service (UMTS). We explore the use of deep learning in wireless communications systems. We consider the effects of training dataset size, features extracted, and channel fading in our study. Experiment results demonstrate the effectiveness of deep learning neural networks in identifying cellular system signals, including UMTS, LTE, and 5G.