5G Signal Identification Using Deep Learning

Mohsen H. Alhazmi, Mofadal Alymani, Hatim Alhazmi, Alhussain Almarhabi, Abdullah Samarkandi, Yu-dong Yao
{"title":"5G Signal Identification Using Deep Learning","authors":"Mohsen H. Alhazmi, Mofadal Alymani, Hatim Alhazmi, Alhussain Almarhabi, Abdullah Samarkandi, Yu-dong Yao","doi":"10.1109/WOCC48579.2020.9114912","DOIUrl":null,"url":null,"abstract":"Spectrum awareness, including identifying different types of signals, is very important in a cellular system environment. In this paper, a neural network is utilized to identify 5G signals among different cellular communications signals, including Long-Term Evolution (LTE) and Universal Mobile Telecommunication Service (UMTS). We explore the use of deep learning in wireless communications systems. We consider the effects of training dataset size, features extracted, and channel fading in our study. Experiment results demonstrate the effectiveness of deep learning neural networks in identifying cellular system signals, including UMTS, LTE, and 5G.","PeriodicalId":187607,"journal":{"name":"2020 29th Wireless and Optical Communications Conference (WOCC)","volume":"40 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 29th Wireless and Optical Communications Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC48579.2020.9114912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Spectrum awareness, including identifying different types of signals, is very important in a cellular system environment. In this paper, a neural network is utilized to identify 5G signals among different cellular communications signals, including Long-Term Evolution (LTE) and Universal Mobile Telecommunication Service (UMTS). We explore the use of deep learning in wireless communications systems. We consider the effects of training dataset size, features extracted, and channel fading in our study. Experiment results demonstrate the effectiveness of deep learning neural networks in identifying cellular system signals, including UMTS, LTE, and 5G.
基于深度学习的5G信号识别
频谱感知,包括识别不同类型的信号,在蜂窝系统环境中非常重要。本文利用神经网络在包括长期演进(LTE)和通用移动通信服务(UMTS)在内的不同蜂窝通信信号中识别5G信号。我们将探讨深度学习在无线通信系统中的应用。在我们的研究中,我们考虑了训练数据集大小、特征提取和信道衰落的影响。实验结果证明了深度学习神经网络在识别蜂窝系统信号(包括UMTS、LTE和5G)方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信