Real-time Multiple Analog Gauges Reader for an Autonomous Robot Application

Visarut Trairattanapa, Sasin Phimsiri, Chaitat Utintu, Riu Cherdchusakulcha, Teepakorn Tosawadi, Ek Thamwiwatthana, Suchat Tungjitnob, Peemapol Tangamonsiri, A. Takutruea, Apirat Keomeesuan, Tanapoom Jitnaknan, V. Suttichaya
{"title":"Real-time Multiple Analog Gauges Reader for an Autonomous Robot Application","authors":"Visarut Trairattanapa, Sasin Phimsiri, Chaitat Utintu, Riu Cherdchusakulcha, Teepakorn Tosawadi, Ek Thamwiwatthana, Suchat Tungjitnob, Peemapol Tangamonsiri, A. Takutruea, Apirat Keomeesuan, Tanapoom Jitnaknan, V. Suttichaya","doi":"10.1109/iSAI-NLP56921.2022.9960268","DOIUrl":null,"url":null,"abstract":"With the development of robotic technology, au-tonomous robots have been extended to production industries to substitute manual tasks like routine operations. In the general manufacturer, analog gauges are the most commonly utilized and required operators for manual reading. Accordingly, an analog gauge reading can be considered a fundamental feature for the operator robots to be fully automated for inspection purposes. This paper presents the methods for reading multiple analog gauges automatically using a camera. The processing pipeline consists of two main stages: 1) gauge detector for extracting individual gauges and 2) gauge reader for estimating gauge values. For gauge detectors, we propose three different YOLOvS architecture sizes. The gauge readers are mainly categorized into computer-vision approach (CV), and deep learning regression approaches. The deep learning approaches consist of two CNN-based backbones, ResNetSO and EfficientNetV2BO, and one transformer-based SwinTransformer. Finally, we introduce the feasibility of the combination of each gauge detector and reader. As a result, the YOLOv5m detector with EfficientNetV2BO CNN backbone reader theoretically achieves the best performance but is not practical for industrial applications. In contrast, we introduce the YOLOv5m detector with the CV method as the most robust multiple gauge reader. As a result, it reaches the comparative performances to the EfficientNetV2BO backbone and is more compatible with robotic applications.","PeriodicalId":399019,"journal":{"name":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","volume":"70 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSAI-NLP56921.2022.9960268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the development of robotic technology, au-tonomous robots have been extended to production industries to substitute manual tasks like routine operations. In the general manufacturer, analog gauges are the most commonly utilized and required operators for manual reading. Accordingly, an analog gauge reading can be considered a fundamental feature for the operator robots to be fully automated for inspection purposes. This paper presents the methods for reading multiple analog gauges automatically using a camera. The processing pipeline consists of two main stages: 1) gauge detector for extracting individual gauges and 2) gauge reader for estimating gauge values. For gauge detectors, we propose three different YOLOvS architecture sizes. The gauge readers are mainly categorized into computer-vision approach (CV), and deep learning regression approaches. The deep learning approaches consist of two CNN-based backbones, ResNetSO and EfficientNetV2BO, and one transformer-based SwinTransformer. Finally, we introduce the feasibility of the combination of each gauge detector and reader. As a result, the YOLOv5m detector with EfficientNetV2BO CNN backbone reader theoretically achieves the best performance but is not practical for industrial applications. In contrast, we introduce the YOLOv5m detector with the CV method as the most robust multiple gauge reader. As a result, it reaches the comparative performances to the EfficientNetV2BO backbone and is more compatible with robotic applications.
用于自主机器人应用的实时多模拟仪表阅读器
随着机器人技术的发展,自主机器人已经扩展到生产行业,以替代日常操作等人工任务。在一般制造商中,模拟仪表是最常用的,需要操作人员手动读数。因此,模拟仪表读数可以被认为是操作机器人完全自动化检测的基本特征。本文介绍了用摄像机自动读取多个模拟量规的方法。处理管道包括两个主要阶段:1)用于提取单个仪表的仪表检测器和2)用于估计仪表值的仪表读取器。对于测量探测器,我们提出了三种不同的yolov架构尺寸。测量阅读器主要分为计算机视觉方法(CV)和深度学习回归方法。深度学习方法包括两个基于cnn的主干,ResNetSO和EfficientNetV2BO,以及一个基于变压器的SwinTransformer。最后,介绍了各仪表检测器与读取器组合的可行性。因此,具有EfficientNetV2BO CNN骨干阅读器的YOLOv5m探测器在理论上达到了最佳性能,但在工业应用中并不实用。相比之下,我们介绍了具有CV方法的YOLOv5m检测器,作为最稳健的多仪表读取器。因此,它达到了与EfficientNetV2BO主干的比较性能,并且与机器人应用更加兼容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信