Minimum message length moving average time series data mining

M. Sak, D. Dowe, S. Ray
{"title":"Minimum message length moving average time series data mining","authors":"M. Sak, D. Dowe, S. Ray","doi":"10.1109/CIMA.2005.1662352","DOIUrl":null,"url":null,"abstract":"This paper considers a criterion for selection of moving average (MA) time series models based upon the information-theoretic principle of minimum message length (MML). We derive an MML model selection criterion for invertible MA time series models using the Wallace and Freeman (1987) MML approximation, MML87. The MML model order selection performance is compared with other well-known model selection criteria such as Akaike's information criterion (AIC), corrected AIC (AICc), Bayesian information criterion (BIC), minimum description length (MDL, 1978), and the Hannan-Quinn (HQ) criterion. Our experiments show that the MML-based criterion achieves the lowest average mean squared prediction error and the best average log likelihood, and has the best ability to choose the true MA model order for smaller sample sizes","PeriodicalId":306045,"journal":{"name":"2005 ICSC Congress on Computational Intelligence Methods and Applications","volume":"34 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 ICSC Congress on Computational Intelligence Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMA.2005.1662352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper considers a criterion for selection of moving average (MA) time series models based upon the information-theoretic principle of minimum message length (MML). We derive an MML model selection criterion for invertible MA time series models using the Wallace and Freeman (1987) MML approximation, MML87. The MML model order selection performance is compared with other well-known model selection criteria such as Akaike's information criterion (AIC), corrected AIC (AICc), Bayesian information criterion (BIC), minimum description length (MDL, 1978), and the Hannan-Quinn (HQ) criterion. Our experiments show that the MML-based criterion achieves the lowest average mean squared prediction error and the best average log likelihood, and has the best ability to choose the true MA model order for smaller sample sizes
最小消息长度移动平均时间序列数据挖掘
基于最小消息长度(MML)的信息论原理,研究了移动平均(MA)时间序列模型的选择准则。我们使用Wallace和Freeman(1987)的MML近似(MML87)推导了可逆MA时间序列模型的MML模型选择准则。将MML模型顺序选择性能与Akaike信息标准(AIC)、修正AIC (AICc)、贝叶斯信息标准(BIC)、最小描述长度(MDL, 1978)和Hannan-Quinn (HQ)标准等其他著名的模型选择标准进行了比较。我们的实验表明,基于mml的准则获得了最小的平均均方预测误差和最佳的平均对数似然,并且在较小样本量下具有最佳的选择真实MA模型阶数的能力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信