vtreat: a data.frame Processor for Predictive Modeling

N. Zumel, J. Mount
{"title":"vtreat: a data.frame Processor for Predictive Modeling","authors":"N. Zumel, J. Mount","doi":"10.5281/ZENODO.1173314","DOIUrl":null,"url":null,"abstract":"We look at common problems found in data that is used for predictive modeling tasks, and describe how to address them with the vtreat R package. vtreat prepares real-world data for predictive modeling in a reproducible and statistically sound manner. We describe the theory of preparing variables so that data has fewer exceptional cases, making it easier to safely use models in production. Common problems dealt with include: infinite values, invalid values, NA, too many categorical levels, rare categorical levels, and new categorical levels (levels seen during application, but not during training). Of special interest are techniques needed to avoid needlessly introducing undesirable nested modeling bias (which is a risk when using a data-preprocessor).","PeriodicalId":409996,"journal":{"name":"arXiv: Applications","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.1173314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We look at common problems found in data that is used for predictive modeling tasks, and describe how to address them with the vtreat R package. vtreat prepares real-world data for predictive modeling in a reproducible and statistically sound manner. We describe the theory of preparing variables so that data has fewer exceptional cases, making it easier to safely use models in production. Common problems dealt with include: infinite values, invalid values, NA, too many categorical levels, rare categorical levels, and new categorical levels (levels seen during application, but not during training). Of special interest are techniques needed to avoid needlessly introducing undesirable nested modeling bias (which is a risk when using a data-preprocessor).
用于预测建模的数据帧处理器
我们将查看用于预测建模任务的数据中发现的常见问题,并描述如何使用vtreat R包解决这些问题。Vtreat准备真实世界的数据,以可重复和统计合理的方式进行预测建模。我们描述了准备变量的理论,以便数据具有更少的异常情况,从而更容易在生产中安全地使用模型。处理的常见问题包括:无限值、无效值、NA、太多的分类级别、罕见的分类级别和新的分类级别(在应用程序期间看到的级别,而不是在训练期间看到的级别)。需要特别关注的是避免不必要地引入不受欢迎的嵌套建模偏差(这在使用数据预处理器时是一种风险)所需的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信