Color Images Segmentation using Pairwise Markov Chain

M. Ameur, N. Idrissi, C. Daoui
{"title":"Color Images Segmentation using Pairwise Markov Chain","authors":"M. Ameur, N. Idrissi, C. Daoui","doi":"10.1109/ICMCS.2018.8525988","DOIUrl":null,"url":null,"abstract":"In this paper, we present two comparative studies. The first one is between two hidden stationaries models of Markov using in image segmentation such as Hidden Markov Chain with Independent Noise (HMC-IN) and Pairwise Markov Chain (PMC). The second one is between three parameter estimators such as EM (Exceptation-Maximization) algorithm, ICE (Iterative Conditional Estimation) algorithm and SEM (Stochastic Exceptation-Maximization) algorithm. To estimate the final configuration of X, we have used MPM (Marginal Posteriori Mode) algorithm. From these comparisons, we can confirm that PMC provides better results of segmentation than HMC-IN. Moreover, EM, ICE, SEM give the same results under HMC-IN and PMC.","PeriodicalId":272255,"journal":{"name":"2018 6th International Conference on Multimedia Computing and Systems (ICMCS)","volume":"377 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Multimedia Computing and Systems (ICMCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMCS.2018.8525988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present two comparative studies. The first one is between two hidden stationaries models of Markov using in image segmentation such as Hidden Markov Chain with Independent Noise (HMC-IN) and Pairwise Markov Chain (PMC). The second one is between three parameter estimators such as EM (Exceptation-Maximization) algorithm, ICE (Iterative Conditional Estimation) algorithm and SEM (Stochastic Exceptation-Maximization) algorithm. To estimate the final configuration of X, we have used MPM (Marginal Posteriori Mode) algorithm. From these comparisons, we can confirm that PMC provides better results of segmentation than HMC-IN. Moreover, EM, ICE, SEM give the same results under HMC-IN and PMC.
基于成对马尔可夫链的彩色图像分割
在本文中,我们提出了两个比较研究。第一个是在图像分割中使用的两个隐平稳的马尔可夫模型之间,如带独立噪声的隐马尔可夫链(HMC-IN)和成对马尔可夫链(PMC)。第二种是EM(例外-最大化)算法、ICE(迭代条件估计)算法和SEM(随机例外-最大化)算法之间的参数估计。为了估计X的最终配置,我们使用了MPM(边际后验模式)算法。通过这些比较,我们可以证实PMC比HMC-IN提供了更好的分割结果。此外,在HMC-IN和PMC下,EM、ICE、SEM得到了相同的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信