Evolutionary Algorithms for Optimization of Drilling Variables for Reduced Thrust Force in Composite Material Drilling

S. Bhardwaj
{"title":"Evolutionary Algorithms for Optimization of Drilling Variables for Reduced Thrust Force in Composite Material Drilling","authors":"S. Bhardwaj","doi":"10.35940/ijsce.b3610.0513223","DOIUrl":null,"url":null,"abstract":"This study aims to optimize drilling variables to reduce the thrust force required for drilling composite materials. The optimization process involves using evolutionary algorithms such as particle swarm optimization (PSO) and genetic algorithm (GA) to determine the best combination of drilling parameters, including drill speed, feed rate, and point angle. The objective is to minimize the thrust force required for drilling while maintaining the desired quality of the drilled holes. ANOVA and regression analysis is implemented to discuss the impact of drilling variable on the thrust force. The results demonstrate that the proposed approach is effective in reducing thrust force and improving drilling efficiency. The optimized drilling parameters obtained can be used to enhance the performance of composite material drilling processes. Performance output of both algorithms for optimization of problem is discussed in detail.","PeriodicalId":173799,"journal":{"name":"International Journal of Soft Computing and Engineering","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Soft Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35940/ijsce.b3610.0513223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to optimize drilling variables to reduce the thrust force required for drilling composite materials. The optimization process involves using evolutionary algorithms such as particle swarm optimization (PSO) and genetic algorithm (GA) to determine the best combination of drilling parameters, including drill speed, feed rate, and point angle. The objective is to minimize the thrust force required for drilling while maintaining the desired quality of the drilled holes. ANOVA and regression analysis is implemented to discuss the impact of drilling variable on the thrust force. The results demonstrate that the proposed approach is effective in reducing thrust force and improving drilling efficiency. The optimized drilling parameters obtained can be used to enhance the performance of composite material drilling processes. Performance output of both algorithms for optimization of problem is discussed in detail.
复合材料钻孔减推力钻孔变量优化的进化算法
本研究旨在优化钻进变量,以降低钻进复合材料所需的推力。优化过程包括使用粒子群优化(PSO)和遗传算法(GA)等进化算法来确定钻井参数的最佳组合,包括钻进速度、进给速率和棱角。其目标是在保持所需的钻孔质量的同时,最大限度地减少钻孔所需的推力。通过方差分析和回归分析,探讨了钻孔变量对推力的影响。结果表明,该方法在减小推力、提高钻进效率方面是有效的。优化得到的钻孔参数可用于提高复合材料钻孔工艺的性能。详细讨论了两种优化算法的性能输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信