Multi-Stage Feature Alignment Network for Video Super-Resolution

Keito Suzuki, M. Ikehara
{"title":"Multi-Stage Feature Alignment Network for Video Super-Resolution","authors":"Keito Suzuki, M. Ikehara","doi":"10.1109/ICIP46576.2022.9897627","DOIUrl":null,"url":null,"abstract":"Video super-resolution aims at generating high-resolution video frames using multiple adjacent low-resolution frames. An important aspect of video super-resolution is the alignment of neighboring frames to the reference frame. Previous methods directly align the frames either using optical flow or deformable convolution. However, directly estimating the motion from low-resolution inputs is hard since they often contain blur and noise that hinder the image quality. To address this problem, we propose to conduct feature alignment across multiple stages to more accurately align the frames. Furthermore, to fuse the aligned features, we introduce a novel Attentional Feature Fusion Block that applies a spatial attention mechanism to avoid areas with occlusion or misalignment. Experimental results show that the proposed method achieves competitive performance to other state-of-the-art super-resolution methods while reducing the network parameters.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"47 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Video super-resolution aims at generating high-resolution video frames using multiple adjacent low-resolution frames. An important aspect of video super-resolution is the alignment of neighboring frames to the reference frame. Previous methods directly align the frames either using optical flow or deformable convolution. However, directly estimating the motion from low-resolution inputs is hard since they often contain blur and noise that hinder the image quality. To address this problem, we propose to conduct feature alignment across multiple stages to more accurately align the frames. Furthermore, to fuse the aligned features, we introduce a novel Attentional Feature Fusion Block that applies a spatial attention mechanism to avoid areas with occlusion or misalignment. Experimental results show that the proposed method achieves competitive performance to other state-of-the-art super-resolution methods while reducing the network parameters.
视频超分辨率多阶段特征对齐网络
视频超分辨率旨在利用多个相邻的低分辨率视频帧生成高分辨率视频帧。视频超分辨率的一个重要方面是相邻帧对参考帧的对齐。以前的方法直接对齐帧或使用光流或可变形卷积。然而,从低分辨率输入直接估计运动是困难的,因为它们通常包含模糊和噪声,从而影响图像质量。为了解决这个问题,我们建议跨多个阶段进行特征对齐,以更准确地对齐帧。此外,为了融合对齐的特征,我们引入了一种新的注意特征融合块,该块应用空间注意机制来避免遮挡或不对齐的区域。实验结果表明,该方法在降低网络参数的同时,取得了与其他超分辨率方法相媲美的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信