Improving medical/biological data classification performance by wavelet preprocessing

Qi Li, Tao Li, Shenghuo Zhu, C. Kambhamettu
{"title":"Improving medical/biological data classification performance by wavelet preprocessing","authors":"Qi Li, Tao Li, Shenghuo Zhu, C. Kambhamettu","doi":"10.1109/ICDM.2002.1184022","DOIUrl":null,"url":null,"abstract":"Many real-world datasets contain noise which could degrade the performances of learning algorithms. Motivated from the success of wavelet denoising techniques in image data, we explore a general solution to alleviate the effect of noisy data by wavelet preprocessing for medical/biological data classification. Our experiments are divided into two categories: one is of different classification algorithms on a specific database, and the other is of a specific classification algorithm (decision tree) on different databases. The experiment results show that the wavelet denoising of noisy data is able to improve the accuracies of those classification methods, if the localities of the attributes are strong enough.","PeriodicalId":405340,"journal":{"name":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","volume":"28 1-2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2002.1184022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Many real-world datasets contain noise which could degrade the performances of learning algorithms. Motivated from the success of wavelet denoising techniques in image data, we explore a general solution to alleviate the effect of noisy data by wavelet preprocessing for medical/biological data classification. Our experiments are divided into two categories: one is of different classification algorithms on a specific database, and the other is of a specific classification algorithm (decision tree) on different databases. The experiment results show that the wavelet denoising of noisy data is able to improve the accuracies of those classification methods, if the localities of the attributes are strong enough.
小波预处理提高医学/生物数据分类性能
许多现实世界的数据集包含噪声,这可能会降低学习算法的性能。基于小波去噪技术在图像数据中的成功应用,我们探索了一种通用的解决方案,通过小波预处理来减轻噪声数据对医学/生物数据分类的影响。我们的实验分为两类:一类是针对特定数据库的不同分类算法,另一类是针对不同数据库的特定分类算法(决策树)。实验结果表明,在属性的局部性足够强的情况下,对噪声数据进行小波去噪可以提高分类方法的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信