On the sum-of-squares degree of symmetric quadratic functions

Troy Lee, A. Prakash, R. D. Wolf, H. Yuen
{"title":"On the sum-of-squares degree of symmetric quadratic functions","authors":"Troy Lee, A. Prakash, R. D. Wolf, H. Yuen","doi":"10.4230/LIPIcs.CCC.2016.17","DOIUrl":null,"url":null,"abstract":"We study how well functions over the boolean hypercube of the form $f_k(x)=(|x|-k)(|x|-k-1)$ can be approximated by sums of squares of low-degree polynomials, obtaining good bounds for the case of approximation in $\\ell_{\\infty}$-norm as well as in $\\ell_1$-norm. We describe three complexity-theoretic applications: (1) a proof that the recent breakthrough lower bound of Lee, Raghavendra, and Steurer on the positive semidefinite extension complexity of the correlation and TSP polytopes cannot be improved further by showing better sum-of-squares degree lower bounds on $\\ell_1$-approximation of $f_k$; (2) a proof that Grigoriev's lower bound on the degree of Positivstellensatz refutations for the knapsack problem is optimal, answering an open question from his work; (3) bounds on the query complexity of quantum algorithms whose expected output approximates such functions.","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"38 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2016.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

We study how well functions over the boolean hypercube of the form $f_k(x)=(|x|-k)(|x|-k-1)$ can be approximated by sums of squares of low-degree polynomials, obtaining good bounds for the case of approximation in $\ell_{\infty}$-norm as well as in $\ell_1$-norm. We describe three complexity-theoretic applications: (1) a proof that the recent breakthrough lower bound of Lee, Raghavendra, and Steurer on the positive semidefinite extension complexity of the correlation and TSP polytopes cannot be improved further by showing better sum-of-squares degree lower bounds on $\ell_1$-approximation of $f_k$; (2) a proof that Grigoriev's lower bound on the degree of Positivstellensatz refutations for the knapsack problem is optimal, answering an open question from his work; (3) bounds on the query complexity of quantum algorithms whose expected output approximates such functions.
关于对称二次函数的平方和度
我们研究了形式为$f_k(x)=(|x|-k)(|x|-k-1)$的布尔超立方体上的函数如何可以很好地用低次多项式的平方和来逼近,得到了$\ell_{\infty}$ -范数和$\ell_1$ -范数近似情况下的良好界。本文描述了三种复杂性理论应用:(1)证明了Lee, Raghavendra, and Steurer关于相关多面体和TSP多面体的正半定扩展复杂性的最新突破下界不能通过在$\ell_1$ -近似$f_k$上给出更好的平方和度下界来进一步改进;(2)证明了Grigoriev关于背包问题的Positivstellensatz反驳度的下界是最优的,回答了Grigoriev工作中的一个开放性问题;(3)期望输出近似于这些函数的量子算法的查询复杂度界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信