Syntax-aware Transformer Encoder for Neural Machine Translation

Sufeng Duan, Hai Zhao, Junru Zhou, Rui Wang
{"title":"Syntax-aware Transformer Encoder for Neural Machine Translation","authors":"Sufeng Duan, Hai Zhao, Junru Zhou, Rui Wang","doi":"10.1109/IALP48816.2019.9037672","DOIUrl":null,"url":null,"abstract":"Syntax has been shown a helpful clue in various natural language processing tasks including previous statistical machine translation and recurrent neural network based machine translation. However, since the state-of-the-art neural machine translation (NMT) has to be built on the Transformer based encoder, few attempts are found on such a syntax enhancement. Thus in this paper, we explore effective ways to introduce syntax into Transformer for better machine translation. We empirically compare two ways, positional encoding and input embedding, to exploit syntactic clues from dependency tree over source sentence. Our proposed methods have a merit keeping the architecture of Transformer unchanged, thus the efficiency of Transformer can be kept. The experimental results on IWSLT’ 14 German-to-English and WMT14 English-to-German show that our method can yield advanced results over strong Transformer baselines.","PeriodicalId":208066,"journal":{"name":"2019 International Conference on Asian Language Processing (IALP)","volume":"46 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP48816.2019.9037672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Syntax has been shown a helpful clue in various natural language processing tasks including previous statistical machine translation and recurrent neural network based machine translation. However, since the state-of-the-art neural machine translation (NMT) has to be built on the Transformer based encoder, few attempts are found on such a syntax enhancement. Thus in this paper, we explore effective ways to introduce syntax into Transformer for better machine translation. We empirically compare two ways, positional encoding and input embedding, to exploit syntactic clues from dependency tree over source sentence. Our proposed methods have a merit keeping the architecture of Transformer unchanged, thus the efficiency of Transformer can be kept. The experimental results on IWSLT’ 14 German-to-English and WMT14 English-to-German show that our method can yield advanced results over strong Transformer baselines.
用于神经机器翻译的语法感知转换器编码器
语法已经在各种自然语言处理任务中显示出有用的线索,包括以前的统计机器翻译和基于循环神经网络的机器翻译。然而,由于最先进的神经机器翻译(NMT)必须构建在基于Transformer的编码器上,因此很少有人尝试对这种语法进行增强。因此,在本文中,我们探索了在Transformer中引入语法的有效方法,以实现更好的机器翻译。我们对位置编码和输入嵌入两种方法进行了实证比较,以挖掘源句子依赖树的句法线索。我们提出的方法在保持变压器结构不变的情况下,可以保持变压器的效率。IWSLT’14德语到英语和WMT14英语到德语的实验结果表明,我们的方法可以在强Transformer基线上获得先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信