Mingwei Zhang, Yang Yang, Rizwan Abbas, Ke Deng, Jianxin Li, Bin Zhang
{"title":"SNPR","authors":"Mingwei Zhang, Yang Yang, Rizwan Abbas, Ke Deng, Jianxin Li, Bin Zhang","doi":"10.1145/3459637.3482394","DOIUrl":null,"url":null,"abstract":"Next Point-of-Interest (POI) recommendation plays an important role in location-based services. The state-of-the-art methods utilize recurrent neural networks (RNNs) to model users' check-in sequences and have shown promising results. However, they tend to recommend POIs similar to those that the user has often visited. As a result, users become bored with obvious recommendations. To address this issue, we propose Serendipity-oriented Next POI Recommendation model (SNPR), a supervised multi-task learning problem, with objective to recommend unexpected and relevant POIs only. To this end, we define the quantitativeserendipity as a trade-off ofrelevance andunexpectedness in the context of next POI recommendation, and design a dedicated neural network with Transformer to capture complex interdependencies between POIs in user's check-in sequence. Extensive experimental results show that our model can improverelevance significantly while theunexpectedness outperforms the state-of-the-art serendipity-oriented recommendation methods.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"55 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Next Point-of-Interest (POI) recommendation plays an important role in location-based services. The state-of-the-art methods utilize recurrent neural networks (RNNs) to model users' check-in sequences and have shown promising results. However, they tend to recommend POIs similar to those that the user has often visited. As a result, users become bored with obvious recommendations. To address this issue, we propose Serendipity-oriented Next POI Recommendation model (SNPR), a supervised multi-task learning problem, with objective to recommend unexpected and relevant POIs only. To this end, we define the quantitativeserendipity as a trade-off ofrelevance andunexpectedness in the context of next POI recommendation, and design a dedicated neural network with Transformer to capture complex interdependencies between POIs in user's check-in sequence. Extensive experimental results show that our model can improverelevance significantly while theunexpectedness outperforms the state-of-the-art serendipity-oriented recommendation methods.