Deformable Alignment And Scale-Adaptive Feature Extraction Network For Continuous-Scale Satellite Video Super-Resolution

Ning Ni, Hanlin Wu, Li-bao Zhang
{"title":"Deformable Alignment And Scale-Adaptive Feature Extraction Network For Continuous-Scale Satellite Video Super-Resolution","authors":"Ning Ni, Hanlin Wu, Li-bao Zhang","doi":"10.1109/ICIP46576.2022.9897998","DOIUrl":null,"url":null,"abstract":"Video super-resolution (VSR), especially continuous-scale VSR, plays a crucial role in improving the quality of satellite video. Continuous-scale VSR aims to use a single model to process arbitrary (integer or non-integer) scale factors, which is conducive to meeting the needs of video images transmission with different compression ratios and arbitrarily zooming by rolling the mouse wheel. In this article, we propose a novel network to achieve continuous-scale satellite VSR (CAVSR). Specifically, first, we propose a time-series-aware dynamic routing deformable alignment module (TDAM) for feature alignment. Second, we develop a scale-adaptive feature extraction module (SFEM), which uses the proposed scale-adaptive convolution (SA-Conv) to dynamically generate different filters based on the input scale information. Finally, we design a global implicit function feature-adaptive walk continuous-scale upsampling module (GFCUM), which can perform feature-adaptive walks according to the input features with different scale information and finally complete the continuous-scale mapping from coordinates to pixel values. Experimental results have demonstrated the CAVSR has superior reconstruction performance.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Video super-resolution (VSR), especially continuous-scale VSR, plays a crucial role in improving the quality of satellite video. Continuous-scale VSR aims to use a single model to process arbitrary (integer or non-integer) scale factors, which is conducive to meeting the needs of video images transmission with different compression ratios and arbitrarily zooming by rolling the mouse wheel. In this article, we propose a novel network to achieve continuous-scale satellite VSR (CAVSR). Specifically, first, we propose a time-series-aware dynamic routing deformable alignment module (TDAM) for feature alignment. Second, we develop a scale-adaptive feature extraction module (SFEM), which uses the proposed scale-adaptive convolution (SA-Conv) to dynamically generate different filters based on the input scale information. Finally, we design a global implicit function feature-adaptive walk continuous-scale upsampling module (GFCUM), which can perform feature-adaptive walks according to the input features with different scale information and finally complete the continuous-scale mapping from coordinates to pixel values. Experimental results have demonstrated the CAVSR has superior reconstruction performance.
面向连续尺度卫星视频超分辨率的形变对齐与尺度自适应特征提取网络
视频超分辨率(VSR),特别是连续尺度视频超分辨率(VSR)对提高卫星视频质量起着至关重要的作用。连续尺度VSR旨在使用单一模型处理任意(整数或非整数)比例因子,有利于满足不同压缩比的视频图像传输需求,通过滚动鼠标滚轮实现任意缩放。本文提出了一种实现连续尺度卫星VSR (CAVSR)的新型网络。具体而言,首先,我们提出了一个时间序列感知的动态路由可变形对齐模块(TDAM)用于特征对齐。其次,我们开发了一个尺度自适应特征提取模块(SFEM),该模块使用提出的尺度自适应卷积(SA-Conv)根据输入的尺度信息动态生成不同的滤波器。最后,我们设计了一个全局隐式函数特征自适应行走连续尺度上采样模块(GFCUM),该模块可以根据输入的不同尺度信息特征进行特征自适应行走,最终完成从坐标到像素值的连续尺度映射。实验结果表明,该方法具有较好的重构性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信