An Adaptive Transcursive Algorithm for Depth Estimation in Deep Learning Networks

Uthra Kunathur Thikshaja, Anand Paul, Seungmin Rho, Deblina Bhattacharjee
{"title":"An Adaptive Transcursive Algorithm for Depth Estimation in Deep Learning Networks","authors":"Uthra Kunathur Thikshaja, Anand Paul, Seungmin Rho, Deblina Bhattacharjee","doi":"10.1109/PLATCON.2016.7456783","DOIUrl":null,"url":null,"abstract":"Estimation of depth in a Neural Network (NN) or Artificial Neural Network (ANN) is an integral as well as complicated process. In this article, we propose a way of using the transformation of functions combined with recursive nature to have an adaptive, transcursive algorithm to represent the backpropagation concept used in deep learning for a Multilayer Perceptron Network. Each function can be used to represent a hidden layer used in the neural network and they can be made to handle a complex part of the processing. Whenever an undesirable output occurs, we transform (modify) the functions until a desirable output is obtained. We have an algorithm that uses the transcursive model to create an interpretation of the concept of deep learning using multilayer perceptron network (MPN).","PeriodicalId":247342,"journal":{"name":"2016 International Conference on Platform Technology and Service (PlatCon)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Platform Technology and Service (PlatCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLATCON.2016.7456783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Estimation of depth in a Neural Network (NN) or Artificial Neural Network (ANN) is an integral as well as complicated process. In this article, we propose a way of using the transformation of functions combined with recursive nature to have an adaptive, transcursive algorithm to represent the backpropagation concept used in deep learning for a Multilayer Perceptron Network. Each function can be used to represent a hidden layer used in the neural network and they can be made to handle a complex part of the processing. Whenever an undesirable output occurs, we transform (modify) the functions until a desirable output is obtained. We have an algorithm that uses the transcursive model to create an interpretation of the concept of deep learning using multilayer perceptron network (MPN).
深度学习网络中深度估计的自适应遍历算法
神经网络(NN)或人工神经网络(ANN)的深度估计是一个完整而复杂的过程。在本文中,我们提出了一种使用函数变换结合递归性质的方法,以自适应,横贯算法来表示多层感知器网络深度学习中使用的反向传播概念。每个函数都可以用来表示神经网络中使用的隐藏层,并且可以使它们处理处理的复杂部分。每当出现不期望的输出时,我们就转换(修改)函数,直到获得期望的输出。我们有一个算法,该算法使用横贯模型来使用多层感知器网络(MPN)创建深度学习概念的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信