Cancer lungs detection on CT scan image using artificial neural network backpropagation based gray level coocurrence matrices feature

L. Anifah, Haryanto, R. Harimurti, Zaimah Permatasari, P. Rusimamto, Adam Ridiantho Muhamad
{"title":"Cancer lungs detection on CT scan image using artificial neural network backpropagation based gray level coocurrence matrices feature","authors":"L. Anifah, Haryanto, R. Harimurti, Zaimah Permatasari, P. Rusimamto, Adam Ridiantho Muhamad","doi":"10.1109/ICACSIS.2017.8355054","DOIUrl":null,"url":null,"abstract":"Lung cancer is the most common cause of cancer death in the world. Early detection of lung cancer will greatly help to save the patient. This research focuses on detection of lung cancer using Artificial Neural Network Back-propagation based Gray Level Co-occurrence Matrices (GLCM) feature. The lung data used originates from the Cancer imaging archive Database, data used consisted of 50 CT-images. CT-image is grouped into 2 clusters, normal and lung cancer. The steps of this research are: image preprocessing, region of interest segmentation, feature extraction, and detection of lung cancer using Neural Network Back-propagation. The results shows system can detect CT-image of normal lung and lung cancer with accuracy of 80%. Hopefully use to help medical personnel and research to detect lung cancer status.","PeriodicalId":316040,"journal":{"name":"2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"8 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2017.8355054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Lung cancer is the most common cause of cancer death in the world. Early detection of lung cancer will greatly help to save the patient. This research focuses on detection of lung cancer using Artificial Neural Network Back-propagation based Gray Level Co-occurrence Matrices (GLCM) feature. The lung data used originates from the Cancer imaging archive Database, data used consisted of 50 CT-images. CT-image is grouped into 2 clusters, normal and lung cancer. The steps of this research are: image preprocessing, region of interest segmentation, feature extraction, and detection of lung cancer using Neural Network Back-propagation. The results shows system can detect CT-image of normal lung and lung cancer with accuracy of 80%. Hopefully use to help medical personnel and research to detect lung cancer status.
基于灰度共生矩阵特征的人工神经网络反向传播对CT扫描图像肺癌的检测
肺癌是世界上最常见的癌症死亡原因。肺癌的早期发现将大大有助于挽救病人的生命。本研究的重点是利用基于人工神经网络反向传播的灰度共生矩阵(GLCM)特征检测肺癌。所使用的肺数据来源于癌症影像档案数据库,所使用的数据包括50张ct图像。ct图像分为正常和肺癌两组。本研究的步骤是:图像预处理、感兴趣区域分割、特征提取以及利用神经网络反向传播检测肺癌。结果表明,该系统可检测正常肺和肺癌的ct图像,准确率达80%。希望能用来帮助医务人员和科研人员检测肺癌的状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信