{"title":"A Bregman stochastic method for nonconvex nonsmooth problem beyond global Lipschitz gradient continuity","authors":"Qingsong Wang, Deren Han","doi":"10.1080/10556788.2023.2189717","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, we consider solving a broad class of large-scale nonconvex and nonsmooth minimization problems by a Bregman proximal stochastic gradient (BPSG) algorithm. The objective function of the minimization problem is the composition of a differentiable and a nondifferentiable function, and the differentiable part does not admit a global Lipschitz continuous gradient. Under some suitable conditions, the subsequential convergence of the proposed algorithm is established. And under expectation conditions with the Kurdyka-Łojasiewicz (KL) property, we also prove that the proposed method converges globally. We also apply the BPSG algorithm to solve sparse nonnegative matrix factorization (NMF), symmetric NMF via non-symmetric relaxation, and matrix completion problems under different kernel generating distances, and numerically compare it with other algorithms. The results demonstrate the robustness and effectiveness of the proposed algorithm.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"42 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2023.2189717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT In this paper, we consider solving a broad class of large-scale nonconvex and nonsmooth minimization problems by a Bregman proximal stochastic gradient (BPSG) algorithm. The objective function of the minimization problem is the composition of a differentiable and a nondifferentiable function, and the differentiable part does not admit a global Lipschitz continuous gradient. Under some suitable conditions, the subsequential convergence of the proposed algorithm is established. And under expectation conditions with the Kurdyka-Łojasiewicz (KL) property, we also prove that the proposed method converges globally. We also apply the BPSG algorithm to solve sparse nonnegative matrix factorization (NMF), symmetric NMF via non-symmetric relaxation, and matrix completion problems under different kernel generating distances, and numerically compare it with other algorithms. The results demonstrate the robustness and effectiveness of the proposed algorithm.