Adaptive optimal bounded-ellipsoid identification with an error under-bounding safeguard: applications in state estimation and speech processing

D. Joachim, J. Deller
{"title":"Adaptive optimal bounded-ellipsoid identification with an error under-bounding safeguard: applications in state estimation and speech processing","authors":"D. Joachim, J. Deller","doi":"10.1109/ICASSP.2000.861979","DOIUrl":null,"url":null,"abstract":"Optimal bounding ellipsoid (OBE) identification algorithms are noted for their simplicity and ability to leverage model error-bound knowledge for improved parameter convergence. However, the OBE convergence rate is dependent on the pointwise \"tightness\" of the model error-bound estimates. Since the least upper bound on the model error is often unknown, the convergence rate is compromised by the need to overestimate error-bounds lest the integrity of the process be violated by underestimation. We present an effective under-bounding safeguard against system model violations in OBE processing. Simulation examples in state estimation and speech processing demonstrate the efficacy of the under-bounding safeguard.","PeriodicalId":164817,"journal":{"name":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","volume":"41 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2000.861979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Optimal bounding ellipsoid (OBE) identification algorithms are noted for their simplicity and ability to leverage model error-bound knowledge for improved parameter convergence. However, the OBE convergence rate is dependent on the pointwise "tightness" of the model error-bound estimates. Since the least upper bound on the model error is often unknown, the convergence rate is compromised by the need to overestimate error-bounds lest the integrity of the process be violated by underestimation. We present an effective under-bounding safeguard against system model violations in OBE processing. Simulation examples in state estimation and speech processing demonstrate the efficacy of the under-bounding safeguard.
带误差下界保护的自适应最优有界椭球识别:在状态估计和语音处理中的应用
最优边界椭球体(OBE)识别算法以其简单性和利用模型误差界知识来改进参数收敛的能力而闻名。然而,OBE的收敛速率依赖于模型误差界估计的逐点“紧度”。由于模型误差的最小上界通常是未知的,因此需要高估误差边界,以免低估过程的完整性而损害收敛速度。在OBE处理中,我们提出了一种有效的下限保护方法来防止系统模型的违反。在状态估计和语音处理方面的仿真实例验证了边界下保护的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信