SIFT in perception-based color space

Yan Cui, A. Pagani, D. Stricker
{"title":"SIFT in perception-based color space","authors":"Yan Cui, A. Pagani, D. Stricker","doi":"10.1109/ICIP.2010.5651165","DOIUrl":null,"url":null,"abstract":"Scale Invariant Feature Transform (SIFT) has been proven to be the most robust local invariant feature descriptor. However, SIFT is designed mainly for grayscale images. Many local features can be misclassified if their color information is ignored. Motivated by perceptual principles, this paper addresses a new color space, called perception-based color space, in which the associated metric approximates perceived distances and color displacements and captures illumination invariant relationship. Instead of using grayscale values to represent the input image, the proposed approach builds the SIFT descriptors in the new color space, resulting in a descriptor that is more robust than the standard SIFT with respect to color and illumination variations. The evaluation results support the potential of the proposed approach.","PeriodicalId":228308,"journal":{"name":"2010 IEEE International Conference on Image Processing","volume":"11 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2010.5651165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Scale Invariant Feature Transform (SIFT) has been proven to be the most robust local invariant feature descriptor. However, SIFT is designed mainly for grayscale images. Many local features can be misclassified if their color information is ignored. Motivated by perceptual principles, this paper addresses a new color space, called perception-based color space, in which the associated metric approximates perceived distances and color displacements and captures illumination invariant relationship. Instead of using grayscale values to represent the input image, the proposed approach builds the SIFT descriptors in the new color space, resulting in a descriptor that is more robust than the standard SIFT with respect to color and illumination variations. The evaluation results support the potential of the proposed approach.
基于感知的色彩空间SIFT
尺度不变特征变换(SIFT)已被证明是最鲁棒的局部不变特征描述子。而SIFT主要是针对灰度图像设计的。如果忽略局部特征的颜色信息,许多局部特征可能会被错误分类。受感知原理的启发,本文提出了一种新的颜色空间,称为基于感知的颜色空间,其中相关度量近似感知距离和颜色位移,并捕获照明不变关系。该方法不是使用灰度值来表示输入图像,而是在新的颜色空间中构建SIFT描述符,从而产生比标准SIFT在颜色和光照变化方面更鲁棒的描述符。评价结果支持了该方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信