{"title":"Signal model specification testing via kernel reconstruction methods","authors":"M. Pawlak","doi":"10.1109/SAMPTA.2015.7148939","DOIUrl":null,"url":null,"abstract":"Given noisy samples of a signal, the problem of testing whether the signal belongs to a given parametric class of signals is considered. We examine the nonparametric situation as for a well-defined null hypothesis signal model we admit broad alternative signal classes that cannot be parametrized. For such a setup, we introduce testing procedures relying on nonparametric kernel-type sampling reconstruction algorithms properly adjusted for noisy data. The proposed testing procedure utilizes the L2 - distance between the kernel estimate and signals from the parametric target class. The central limit theorem of the test statistic is derived yielding a consistent testing method. Hence, we obtain the testing algorithm with the desirable level of the probability of false alarm and the power tending to one.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"78 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Given noisy samples of a signal, the problem of testing whether the signal belongs to a given parametric class of signals is considered. We examine the nonparametric situation as for a well-defined null hypothesis signal model we admit broad alternative signal classes that cannot be parametrized. For such a setup, we introduce testing procedures relying on nonparametric kernel-type sampling reconstruction algorithms properly adjusted for noisy data. The proposed testing procedure utilizes the L2 - distance between the kernel estimate and signals from the parametric target class. The central limit theorem of the test statistic is derived yielding a consistent testing method. Hence, we obtain the testing algorithm with the desirable level of the probability of false alarm and the power tending to one.