Signal model specification testing via kernel reconstruction methods

M. Pawlak
{"title":"Signal model specification testing via kernel reconstruction methods","authors":"M. Pawlak","doi":"10.1109/SAMPTA.2015.7148939","DOIUrl":null,"url":null,"abstract":"Given noisy samples of a signal, the problem of testing whether the signal belongs to a given parametric class of signals is considered. We examine the nonparametric situation as for a well-defined null hypothesis signal model we admit broad alternative signal classes that cannot be parametrized. For such a setup, we introduce testing procedures relying on nonparametric kernel-type sampling reconstruction algorithms properly adjusted for noisy data. The proposed testing procedure utilizes the L2 - distance between the kernel estimate and signals from the parametric target class. The central limit theorem of the test statistic is derived yielding a consistent testing method. Hence, we obtain the testing algorithm with the desirable level of the probability of false alarm and the power tending to one.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"78 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given noisy samples of a signal, the problem of testing whether the signal belongs to a given parametric class of signals is considered. We examine the nonparametric situation as for a well-defined null hypothesis signal model we admit broad alternative signal classes that cannot be parametrized. For such a setup, we introduce testing procedures relying on nonparametric kernel-type sampling reconstruction algorithms properly adjusted for noisy data. The proposed testing procedure utilizes the L2 - distance between the kernel estimate and signals from the parametric target class. The central limit theorem of the test statistic is derived yielding a consistent testing method. Hence, we obtain the testing algorithm with the desirable level of the probability of false alarm and the power tending to one.
基于核重构方法的信号模型规格测试
给定信号的噪声样本,考虑信号是否属于给定参数信号的问题。对于一个定义良好的零假设信号模型,我们研究了非参数情况,我们承认不能参数化的广泛的可选信号类别。对于这样的设置,我们介绍了依赖于非参数核类型采样重建算法的测试程序,该算法对噪声数据进行了适当调整。所提出的测试方法利用了核估计与参数目标类信号之间的L2距离。导出了检验统计量的中心极限定理,得到了一种一致性检验方法。由此,我们得到了虚警概率和幂趋近于1的理想水平的测试算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信