Component Pattern Separation of Completely Unknown Fluorescent Images by Double Eigenvector Analysis

S. Kawata, K. Sasaki
{"title":"Component Pattern Separation of Completely Unknown Fluorescent Images by Double Eigenvector Analysis","authors":"S. Kawata, K. Sasaki","doi":"10.1364/srs.1989.thb1","DOIUrl":null,"url":null,"abstract":"We have proposed a new pattern recognition method, for interpreting image data from fluorescence microscopes. In this method, component patterns included in multispectral images of completely unknown mixture samples can be evaluated, without knowing the spectra or spatial patterns of the components [1,2]. Principal component analysis and optimization theory are used with nonnegativity constraints and entropy minimization. This method discovers unpredicted or unknown components in various microscopic environments. Even completely new material to the human beings could be found by this method. However, the method does not guarantee to give the true solution of component patterns, but instead an optimal one under the criterion of entropy minimization.","PeriodicalId":193110,"journal":{"name":"Signal Recovery and Synthesis III","volume":"137 1-2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Recovery and Synthesis III","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1989.thb1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We have proposed a new pattern recognition method, for interpreting image data from fluorescence microscopes. In this method, component patterns included in multispectral images of completely unknown mixture samples can be evaluated, without knowing the spectra or spatial patterns of the components [1,2]. Principal component analysis and optimization theory are used with nonnegativity constraints and entropy minimization. This method discovers unpredicted or unknown components in various microscopic environments. Even completely new material to the human beings could be found by this method. However, the method does not guarantee to give the true solution of component patterns, but instead an optimal one under the criterion of entropy minimization.
基于双特征向量分析的完全未知荧光图像成分模式分离
我们提出了一种新的模式识别方法,用于解释荧光显微镜图像数据。在该方法中,可以在不知道组分的光谱或空间模式的情况下,对完全未知的混合样品的多光谱图像中包含的组分模式进行评估[1,2]。主成分分析和优化理论应用于非负性约束和熵最小化。这种方法在各种微观环境中发现不可预测或未知的成分。通过这种方法,甚至可以找到对人类来说全新的材料。然而,该方法不能保证给出组件模式的真实解,而是在熵最小准则下的最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信