Optimum window-size computation for moment based texture segmentation

N. Qaiser, M. Hussain
{"title":"Optimum window-size computation for moment based texture segmentation","authors":"N. Qaiser, M. Hussain","doi":"10.1109/INMIC.2003.1416610","DOIUrl":null,"url":null,"abstract":"The quality of texture segmentation depends on extracted features. Most statistical feature extraction techniques require an optimum region size, called a window, to capture a better texture feature. The literature shows that window-size selection is primarily done by visual inspection based on experience or trial and error. The paper investigates the issue and attempts to formulate a framework based on the established technique of Fourier analysis to automate the optimum window size computation and feature weight selection. Fourier data in polar form has been used for computing the optimum window size and then for generation of the weighted feature space. Clustering using competitive neural networks when applied to moment features extracted using an optimized window shows good results","PeriodicalId":253329,"journal":{"name":"7th International Multi Topic Conference, 2003. INMIC 2003.","volume":"59 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Multi Topic Conference, 2003. INMIC 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2003.1416610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The quality of texture segmentation depends on extracted features. Most statistical feature extraction techniques require an optimum region size, called a window, to capture a better texture feature. The literature shows that window-size selection is primarily done by visual inspection based on experience or trial and error. The paper investigates the issue and attempts to formulate a framework based on the established technique of Fourier analysis to automate the optimum window size computation and feature weight selection. Fourier data in polar form has been used for computing the optimum window size and then for generation of the weighted feature space. Clustering using competitive neural networks when applied to moment features extracted using an optimized window shows good results
基于矩的纹理分割的最佳窗口大小计算
纹理分割的质量取决于提取的特征。大多数统计特征提取技术需要一个最佳的区域大小,称为窗口,以捕获更好的纹理特征。文献表明,窗口大小的选择主要是通过基于经验或试验和错误的视觉检查来完成的。本文对这一问题进行了研究,并试图在已有的傅里叶分析技术的基础上建立一个框架,以实现最佳窗口大小计算和特征权重选择的自动化。利用极坐标形式的傅里叶数据计算最佳窗口大小,然后生成加权特征空间。将竞争神经网络聚类应用于使用优化窗口提取的矩特征时,效果良好
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信